Return to search

Approches duales dans la résolution de problèmes stochastiques

Le travail général de cette thèse consiste à étendre les outils analytiques et algébriques usuellement employés dans la résolution de problèmes combinatoires déterministes à un cadre combinatoire stochastique. Deux cadres distincts sont étudiés : les problèmes combinatoires stochastiques discrets et les problèmes stochastiques continus. Le cadre discret est abordé à travers le problème de la forêt couvrante de poids maximal dans une formulation Two-Stage à multi-scénarios. La version déterministe très connue de ce problème établit des liens entre la fonction de rang dans un matroïde et la formulation duale, via l'algorithme glouton. La formulation stochastique discrète du problème de la forêt maximale couvrante est transformée en un problème déterministe équivalent, mais du fait de la multiplicité des scénarios, le dual associé est en quelque sorte incomplet. Le travail réalisé ici consiste à comprendre en quelles circonstances la formulation duale atteint néanmoins un minimum égal au problème primal intégral. D'ordinaire, une approche combinatoire classique des problèmes de graphes pondérés consiste à rechercher des configurations particulières au sein des graphes, comme les circuits, et à explorer d'éventuelles recombinaisons. Pour donner une illustration simple, si on change d'une manière infinitésimale les valeurs de poids des arêtes d'un graphe, il est possible que la forêt couvrante de poids maximal se réorganise complètement. Ceci est vu comme un obstacle dans une approche purement combinatoire. Pourtant, certaines grandeurs analytiques vont varier de manière continue en fonction de ces variations infinitésimales, comme la somme des poids des arêtes choisies. Nous introduisons des fonctions qui rendent compte de ces variations continues, et nous examinons dans quels cas les formulations duales atteignent la même valeur que les formulations primales intégrales. Nous proposons une méthode d'approximation dans le cas contraire et nous statuons sur la NP complétude de ce type de problème.Les problèmes stochastiques continus sont abordés via le problème de sac à dos avec contrainte stochastique. La formulation est de type ''chance constraint'', et la dualisation par variable lagrangienne est adaptée à une situation où la probabilité de respecter la contrainte doit rester proche de $1$. Le modèle étudié est celui d'un sac à dos où les objets ont une valeur et un poids déterminés par des distributions normales. Dans notre approche, nous nous attachons à appliquer des méthodes de gradient directement sur la formulation en espérance de la fonction objectif et de la contrainte. Nous délaissons donc une possible reformulation classique du problème sous forme géométrique pour détailler les conditions de convergence de la méthode du gradient stochastique. Cette partie est illustrée par des tests numériques de comparaison avec la méthode SOCP sur des instances combinatoires avec méthode de Branch and Bound, et sur des instances relaxées.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00938751
Date27 September 2013
CreatorsLetournel, Marc
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0024 seconds