Return to search

Estimates for the condition numbers of large semi-definite Toeplitz matrices

This paper is devoted to asymptotic estimates for the condition numbers

$\kappa(T_n(a))=||T_n(a)|| ||T_n^(-1)(a)||$

of large $n\cross n$ Toeplitz matrices $T_N(a)$ in the case where
$\alpha \element L^\infinity$ and $Re \alpha \ge 0$ . We describe several classes
of symbols $\alpha$ for which $\kappa(T_n(a))$ increases like $(log n)^\alpha, n^\alpha$ ,
or even $e^(\alpha n)$ . The consequences of the results for singular values, eigenvalues,
and the finite section method are discussed. We also consider Wiener-Hopf integral
operators and multidimensional Toeplitz operators.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-199801238
Date30 October 1998
CreatorsBöttcher, A., Grudsky, S. M.
ContributorsTU Chemnitz, Fakultät für Mathematik
PublisherUniversitätsbibliothek Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:preprint
Formatapplication/pdf, application/x-dvi, application/postscript, text/plain, application/zip

Page generated in 0.0021 seconds