Spelling suggestions: "subject:"wienerhopf"" "subject:"dienerschaft""
1 |
Fast iterative methods for Wiener-Hopf equations林福榮, Lin, Fu-rong. January 1995 (has links)
published_or_final_version / abstract / toc / Mathematics / Doctoral / Doctor of Philosophy
|
2 |
Fast iterative methods for Wiener-Hopf equations /Lin, Fu-rong. January 1900 (has links)
Thesis (Ph. D.)--University of Hong Kong, 1995. / Photocopy of the original. Includes bibliographical references (leaf 92-96).
|
3 |
Acoustic diffraction and scattering by waveguide structuresMahmood-ul-Hassan January 1998 (has links)
No description available.
|
4 |
Analytical and numerical methods for the acoustic scattering from finite structuresJames, David Alun January 1999 (has links)
No description available.
|
5 |
Multigroup transport equations with nondiagonal cross section matricesWillis, Barton L. January 1985 (has links)
It is shown that multigroup transport equations with nondiagonal cross section matrices arise when the modal approximation is applied to energy dependent transport equations. This work is a study of such equations for the case that the cross section matrix is nondiagonalizable. For the special case of a two-group problem with a noninvertible scattering matrix, the problem is solved completely via the Wiener-Hopf method. For more general problems, generalized Chandrasekhar H equations are derived. A numerical method for their solution is proposed. Also, the exit distribution is written in terms of the H functions. / Ph. D. / incomplete_metadata
|
6 |
Analytical techniques for acoustic scattering by arrays of cylindersTymis, Nikolaos January 2012 (has links)
The problem of two-dimensional acoustic scattering of an incident plane wave by a semi-infinite lattice is solved. The problem is first considered for sound-soft cylinders whose size is small compared to the wavelength of the incident field. In this case the formulation leads to a scalar Wiener--Hopf equation, and this in turn is solved via the discrete Wiener--Hopf technique. We then deal with a more complex case which arises either by imposing Neumann boundary condition on the cylinders' surface or by increasing their radii. This gives rise to a matrix Wiener--Hopf equation, and we present a method of solution that does not require the explicit factorisation of the kernel. In both situations, a complete description of the far field is given and a conservation of energy condition is obtained. For certain sets of parameters (`pass bands'), a portion of the incident energy propagates through the lattice in the form of a Bloch wave. For other parameters (`stop bands' or `band gaps'), no such transmission is possible, and all of the incident field energy is reflected away from the lattice.
|
7 |
Boundary value and Wiener-Hopf problems for abstract kinetic equations with nonregular collision operatorsGanchev, Alexander Hristov January 1986 (has links)
We study the linear abstract kinetic equation T𝜑(x)′=-A𝜑(x) in the half space {x≥0} with partial range boundary conditions. The function <i>ψ</i> takes values in a Hilbert space H, T is a self adjoint injective operator on H and A is an accretive operator. The first step in the analysis of this boundary value problem is to show that T⁻¹A generates a holomorphic bisemigroup. We prove two theorems about perturbation of bisemigroups that are interesting in their own right. The second step is to obtain a special decomposition of H which is equivalent to a Wiener-Hopf factorization. The accretivity of A is crucial in this step. When A is of the form "identity plus a compact operator", we work in the original Hilbert space. For unbounded A’s we consider weak solutions in a larger space H<sub>T</sub>, which has a natural Krein space structure. Using the Krein space geometry considerably simplifies the analysis of the question of unique solvability. / Ph. D. / incomplete_metadata
|
8 |
Multiplicateurs sur les espaces de Banach de fonctions sur un groupe localement compact abélienPetkova, Violeta 14 December 2005 (has links) (PDF)
On étudie les multiplicateurs, c'est-à-dire les opérateurs bornés qui commutent avec les translations sur un espace de fonctions sur un groupe localement compact abélien G. On obtient pour tout multiplicateur un symbole essentiellement borné sur un ensemble de morphismes continus sur G, lié au spectre simultané des translations. Nous établissons aussi des résultats analogues pour les opérateurs de Wiener-Hopf (resp. Toeplitz) sur des espaces de fonctions sur R+ (resp. Z+).
|
9 |
Estimates for the condition numbers of large semi-definite Toeplitz matricesBöttcher, A., Grudsky, S. M. 30 October 1998 (has links) (PDF)
This paper is devoted to asymptotic estimates for the condition numbers
$\kappa(T_n(a))=||T_n(a)|| ||T_n^(-1)(a)||$
of large $n\cross n$ Toeplitz matrices $T_N(a)$ in the case where
$\alpha \element L^\infinity$ and $Re \alpha \ge 0$ . We describe several classes
of symbols $\alpha$ for which $\kappa(T_n(a))$ increases like $(log n)^\alpha, n^\alpha$ ,
or even $e^(\alpha n)$ . The consequences of the results for singular values, eigenvalues,
and the finite section method are discussed. We also consider Wiener-Hopf integral
operators and multidimensional Toeplitz operators.
|
10 |
Factorization theory for Toeplitz plus Hankel operators and singular integral operators with flipEhrhardt, Torsten 02 September 2004 (has links) (PDF)
In this habilitation thesis a factorization theory for Toeplitz plus Hankel operators and singular integral operators with flip is established. These operators are considered with matrix-valued symbols and are thought of acting on the vector-valued analogues of the Hardy and Lebesgue spaces.
A factorization theory for pure Toeplitz operators and singular integral operators without flip is known since decades and provides necessary and sufficient conditions for Fredholmness and formulas for the defect numbers. In particular, the invertibility of such operators is equivalent to the existence of a certain type of Wiener-Hopf factorization.
In this thesis an analogous theory for the afore-mentioned more general classes of operators is developed. It turns out that a completely different kind of factorization is needed. This kind of factorization is studied extensively, and a corresponding Fredholm theory is established. A connection with the Hunt-Muckenhoupt-Wheeden condition is made, and several examples and applications are given as well. / In dieser Habilitationsschrift wird eine Faktorisierungstheorie für Toeplitz plus Hankel-Operatoren und singuläre Integraloperatoren mit Flip aufgestellt. Diese Operatoren werden mit matrixwertigem Symbol betrachtet und sind auf den vektorwertigen Analoga der Hardy- und Lebesgue-Räumen definiert.
Eine Faktorisierungstheorie für reine Toeplitz bzw. singuläre Integraloperatoren ohne Flip ist seit Jahrzehnten bekannt. Sie liefert notwendige und hinreichende Bedingungen für die Fredholmeigenschaft und Formeln für die Defektzahlen. Insbesondere ist die Invertierbarkeit derartiger Operatoren äquivalent zur Existenz einer bestimmten Art der Wiener-Hopf-Faktorisierung.
In dieser Habilitationsschrift wird eine entsprechende Theorie für die erwähnten, allgemeineren Klassen von Operatoren aufgestellt. Es stellt sich heraus, dass eine völlig andere Art der Faktorisierung benötigt wird. Diese Art der Faktorisierung wird eingehend studiert und eine entsprechende Fredholmtheorie wird entwickelt. Ein Zusammenhang mit der Hunt-Muckenhoupt-Wheeden Bedingung wird hergestellt. Mehrere Beispiele und Anwendungen werden ebenfalls angegeben.
|
Page generated in 0.0276 seconds