Spelling suggestions: "subject:"fredholmtheorie"" "subject:"fredholmteorie""
1 |
Factorization theory for Toeplitz plus Hankel operators and singular integral operators with flipEhrhardt, Torsten. January 2004 (has links) (PDF)
Chemnitz, Techn. University, Habil.-Schr., 2004.
|
2 |
Über die Splitting-Eigenschaft der Approximationszahlen von Matrix-Folgen : l1-Theorie$nElektronische Ressource /Seidel, Markus, Silbermann, Bernd. January 2006 (has links)
Chemnitz, Techn. Univ., Diplomarb., 2006.
|
3 |
Semiclassical approximations for single eigenstates of quantum mapsSczyrba, Martin. Unknown Date (has links) (PDF)
Techn. University, Diss., 2003--Dresden.
|
4 |
Factorization theory for Toeplitz plus Hankel operators and singular integral operators with flipEhrhardt, Torsten 02 September 2004 (has links) (PDF)
In this habilitation thesis a factorization theory for Toeplitz plus Hankel operators and singular integral operators with flip is established. These operators are considered with matrix-valued symbols and are thought of acting on the vector-valued analogues of the Hardy and Lebesgue spaces.
A factorization theory for pure Toeplitz operators and singular integral operators without flip is known since decades and provides necessary and sufficient conditions for Fredholmness and formulas for the defect numbers. In particular, the invertibility of such operators is equivalent to the existence of a certain type of Wiener-Hopf factorization.
In this thesis an analogous theory for the afore-mentioned more general classes of operators is developed. It turns out that a completely different kind of factorization is needed. This kind of factorization is studied extensively, and a corresponding Fredholm theory is established. A connection with the Hunt-Muckenhoupt-Wheeden condition is made, and several examples and applications are given as well. / In dieser Habilitationsschrift wird eine Faktorisierungstheorie für Toeplitz plus Hankel-Operatoren und singuläre Integraloperatoren mit Flip aufgestellt. Diese Operatoren werden mit matrixwertigem Symbol betrachtet und sind auf den vektorwertigen Analoga der Hardy- und Lebesgue-Räumen definiert.
Eine Faktorisierungstheorie für reine Toeplitz bzw. singuläre Integraloperatoren ohne Flip ist seit Jahrzehnten bekannt. Sie liefert notwendige und hinreichende Bedingungen für die Fredholmeigenschaft und Formeln für die Defektzahlen. Insbesondere ist die Invertierbarkeit derartiger Operatoren äquivalent zur Existenz einer bestimmten Art der Wiener-Hopf-Faktorisierung.
In dieser Habilitationsschrift wird eine entsprechende Theorie für die erwähnten, allgemeineren Klassen von Operatoren aufgestellt. Es stellt sich heraus, dass eine völlig andere Art der Faktorisierung benötigt wird. Diese Art der Faktorisierung wird eingehend studiert und eine entsprechende Fredholmtheorie wird entwickelt. Ein Zusammenhang mit der Hunt-Muckenhoupt-Wheeden Bedingung wird hergestellt. Mehrere Beispiele und Anwendungen werden ebenfalls angegeben.
|
5 |
Über die Splitting-Eigenschaft der Approximationszahlen von Matrix-Folgen: l1-TheorieSeidel, Markus 02 February 2007 (has links) (PDF)
In dieser Arbeit wird das asymptotische Verhalten der Approximationszahlen für Operatorfolgen aus einer speziellen Klasse von Banachalgebren untersucht. Es werden bemerkenswerte Eigenschaften der Folgen und der Approximationszahlen ihrer Operatoren gezeigt, darunter die so genannte splitting-Eigenschaft.
Ein typisches Beispiel solcher Operatorfolgen stellen die Finite Sections von Toeplitzoperatoren dar, die exemplarisch behandelt werden. Dabei werden hier auch die Folgenräume l1 und l-unendlich betrachtet.
|
6 |
Über die Splitting-Eigenschaft der Approximationszahlen von Matrix-Folgen: l1-TheorieSeidel, Markus 16 January 2006 (has links)
In dieser Arbeit wird das asymptotische Verhalten der Approximationszahlen für Operatorfolgen aus einer speziellen Klasse von Banachalgebren untersucht. Es werden bemerkenswerte Eigenschaften der Folgen und der Approximationszahlen ihrer Operatoren gezeigt, darunter die so genannte splitting-Eigenschaft.
Ein typisches Beispiel solcher Operatorfolgen stellen die Finite Sections von Toeplitzoperatoren dar, die exemplarisch behandelt werden. Dabei werden hier auch die Folgenräume l1 und l-unendlich betrachtet.
|
7 |
Factorization theory for Toeplitz plus Hankel operators and singular integral operators with flipEhrhardt, Torsten 05 July 2004 (has links)
In this habilitation thesis a factorization theory for Toeplitz plus Hankel operators and singular integral operators with flip is established. These operators are considered with matrix-valued symbols and are thought of acting on the vector-valued analogues of the Hardy and Lebesgue spaces.
A factorization theory for pure Toeplitz operators and singular integral operators without flip is known since decades and provides necessary and sufficient conditions for Fredholmness and formulas for the defect numbers. In particular, the invertibility of such operators is equivalent to the existence of a certain type of Wiener-Hopf factorization.
In this thesis an analogous theory for the afore-mentioned more general classes of operators is developed. It turns out that a completely different kind of factorization is needed. This kind of factorization is studied extensively, and a corresponding Fredholm theory is established. A connection with the Hunt-Muckenhoupt-Wheeden condition is made, and several examples and applications are given as well. / In dieser Habilitationsschrift wird eine Faktorisierungstheorie für Toeplitz plus Hankel-Operatoren und singuläre Integraloperatoren mit Flip aufgestellt. Diese Operatoren werden mit matrixwertigem Symbol betrachtet und sind auf den vektorwertigen Analoga der Hardy- und Lebesgue-Räumen definiert.
Eine Faktorisierungstheorie für reine Toeplitz bzw. singuläre Integraloperatoren ohne Flip ist seit Jahrzehnten bekannt. Sie liefert notwendige und hinreichende Bedingungen für die Fredholmeigenschaft und Formeln für die Defektzahlen. Insbesondere ist die Invertierbarkeit derartiger Operatoren äquivalent zur Existenz einer bestimmten Art der Wiener-Hopf-Faktorisierung.
In dieser Habilitationsschrift wird eine entsprechende Theorie für die erwähnten, allgemeineren Klassen von Operatoren aufgestellt. Es stellt sich heraus, dass eine völlig andere Art der Faktorisierung benötigt wird. Diese Art der Faktorisierung wird eingehend studiert und eine entsprechende Fredholmtheorie wird entwickelt. Ein Zusammenhang mit der Hunt-Muckenhoupt-Wheeden Bedingung wird hergestellt. Mehrere Beispiele und Anwendungen werden ebenfalls angegeben.
|
8 |
On some Banach Algebra Tools in Operator TheorySeidel, Markus 13 February 2012 (has links) (PDF)
Die vorliegende Arbeit ist der Untersuchung von Operatorfolgen gewidmet, die typischerweise bei der Anwendung von Approximationsverfahren auf stetige lineare Operatoren entstehen. Dabei stehen die Stabilität der Folgen sowie das asymptotische Verhalten gewisser Charakteristika wie Normen, Konditionszahlen, Fredholmeigenschaften und Pseudospektren im Mittelpunkt.
Das Hauptaugenmerk liegt auf der Entwicklung der Theorie für Operatoren auf Banachräumen. Hierbei bildet ein dafür geeigneter Konvergenzbegriff, die sogenannte P-starke Konvergenz, den Ausgangspunkt, welcher das Studium der gewünschten Eigenschaften in einer erstaunlichen Allgemeinheit gestattet.
Die erzielten Resultate kommen, neben einer Reihe weiterer Anwendungen, insbesondere für das Projektionsverfahren für banddominierte Operatoren zum Einsatz.
|
9 |
On some Banach Algebra Tools in Operator TheorySeidel, Markus 09 February 2012 (has links)
Die vorliegende Arbeit ist der Untersuchung von Operatorfolgen gewidmet, die typischerweise bei der Anwendung von Approximationsverfahren auf stetige lineare Operatoren entstehen. Dabei stehen die Stabilität der Folgen sowie das asymptotische Verhalten gewisser Charakteristika wie Normen, Konditionszahlen, Fredholmeigenschaften und Pseudospektren im Mittelpunkt.
Das Hauptaugenmerk liegt auf der Entwicklung der Theorie für Operatoren auf Banachräumen. Hierbei bildet ein dafür geeigneter Konvergenzbegriff, die sogenannte P-starke Konvergenz, den Ausgangspunkt, welcher das Studium der gewünschten Eigenschaften in einer erstaunlichen Allgemeinheit gestattet.
Die erzielten Resultate kommen, neben einer Reihe weiterer Anwendungen, insbesondere für das Projektionsverfahren für banddominierte Operatoren zum Einsatz.
|
Page generated in 0.0263 seconds