1 |
Convolution type operators on cones and asymptotic spectral theoryMascarenhas, Helena 28 January 2004 (has links) (PDF)
Die Arbeit beschäftigt sich mit Faltungsoperatoren auf Kegeln, die in Lebesgueräumen L^p(R^2) (1<p<\infty) von Funktionen auf der Ebene wirken.
Es werden asymptotische Spektraleigenschaften der zugehörigen Finite Sections studiert. Im Falle p=2 (Hilbertraum) wird das Invertierbarkeitsproblem von Operatoren vom Faltungstyp auf Kegeln mit Hilfe der Methode der Standard-Modell-Algebren untersucht.
|
2 |
Convolution type operators on cones and asymptotic spectral theoryMascarenhas, Helena 23 January 2004 (has links)
Die Arbeit beschäftigt sich mit Faltungsoperatoren auf Kegeln, die in Lebesgueräumen L^p(R^2) (1<p<\infty) von Funktionen auf der Ebene wirken.
Es werden asymptotische Spektraleigenschaften der zugehörigen Finite Sections studiert. Im Falle p=2 (Hilbertraum) wird das Invertierbarkeitsproblem von Operatoren vom Faltungstyp auf Kegeln mit Hilfe der Methode der Standard-Modell-Algebren untersucht.
|
3 |
On some Banach Algebra Tools in Operator TheorySeidel, Markus 13 February 2012 (has links) (PDF)
Die vorliegende Arbeit ist der Untersuchung von Operatorfolgen gewidmet, die typischerweise bei der Anwendung von Approximationsverfahren auf stetige lineare Operatoren entstehen. Dabei stehen die Stabilität der Folgen sowie das asymptotische Verhalten gewisser Charakteristika wie Normen, Konditionszahlen, Fredholmeigenschaften und Pseudospektren im Mittelpunkt.
Das Hauptaugenmerk liegt auf der Entwicklung der Theorie für Operatoren auf Banachräumen. Hierbei bildet ein dafür geeigneter Konvergenzbegriff, die sogenannte P-starke Konvergenz, den Ausgangspunkt, welcher das Studium der gewünschten Eigenschaften in einer erstaunlichen Allgemeinheit gestattet.
Die erzielten Resultate kommen, neben einer Reihe weiterer Anwendungen, insbesondere für das Projektionsverfahren für banddominierte Operatoren zum Einsatz.
|
4 |
Approximation Methods for Convolution Operators on the Real LineSantos, Pedro 25 April 2005 (has links) (PDF)
This work is concerned with the applicability of several approximation methods (finite section method, Galerkin and collocation methods with maximum defect splines for uniform and non uniform meshes) to operators belonging to the closed subalgebra generated by operators of multiplication bz piecewise continuous functions and convolution operators also with piecewise continuous generating function.
|
5 |
Approximation Methods for Convolution Operators on the Real LineSantos, Pedro 22 April 2005 (has links)
This work is concerned with the applicability of several approximation methods (finite section method, Galerkin and collocation methods with maximum defect splines for uniform and non uniform meshes) to operators belonging to the closed subalgebra generated by operators of multiplication bz piecewise continuous functions and convolution operators also with piecewise continuous generating function.
|
6 |
On some Banach Algebra Tools in Operator TheorySeidel, Markus 09 February 2012 (has links)
Die vorliegende Arbeit ist der Untersuchung von Operatorfolgen gewidmet, die typischerweise bei der Anwendung von Approximationsverfahren auf stetige lineare Operatoren entstehen. Dabei stehen die Stabilität der Folgen sowie das asymptotische Verhalten gewisser Charakteristika wie Normen, Konditionszahlen, Fredholmeigenschaften und Pseudospektren im Mittelpunkt.
Das Hauptaugenmerk liegt auf der Entwicklung der Theorie für Operatoren auf Banachräumen. Hierbei bildet ein dafür geeigneter Konvergenzbegriff, die sogenannte P-starke Konvergenz, den Ausgangspunkt, welcher das Studium der gewünschten Eigenschaften in einer erstaunlichen Allgemeinheit gestattet.
Die erzielten Resultate kommen, neben einer Reihe weiterer Anwendungen, insbesondere für das Projektionsverfahren für banddominierte Operatoren zum Einsatz.
|
Page generated in 0.0827 seconds