• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hypercyclic Operators and their Orbital Limit Points

Seceleanu, Irina 14 August 2010 (has links)
No description available.
2

Approximation Methods for Convolution Operators on the Real Line

Santos, Pedro 25 April 2005 (has links) (PDF)
This work is concerned with the applicability of several approximation methods (finite section method, Galerkin and collocation methods with maximum defect splines for uniform and non uniform meshes) to operators belonging to the closed subalgebra generated by operators of multiplication bz piecewise continuous functions and convolution operators also with piecewise continuous generating function.
3

Approximation Methods for Convolution Operators on the Real Line

Santos, Pedro 22 April 2005 (has links)
This work is concerned with the applicability of several approximation methods (finite section method, Galerkin and collocation methods with maximum defect splines for uniform and non uniform meshes) to operators belonging to the closed subalgebra generated by operators of multiplication bz piecewise continuous functions and convolution operators also with piecewise continuous generating function.
4

Stability Rates for Linear Ill-Posed Problems with Convolution and Multiplication Operators

Hofmann, B., Fleischer, G. 30 October 1998 (has links) (PDF)
In this paper we deal with the `strength' of ill-posedness for ill-posed linear operator equations Ax = y in Hilbert spaces, where we distinguish according_to_M. Z. Nashed [15] the ill-posedness of type I if A is not compact, but we have R(A) 6= R(A) for the range R(A) of A; and the ill-posedness of type II for compact operators A: From our considerations it seems to follow that the problems with noncompact operators A are not in general `less' ill-posed than the problems with compact operators. We motivate this statement by comparing the approximation and stability behaviour of discrete least-squares solutions and the growth rate of Galerkin matrices in both cases. Ill-posedness measures for compact operators A as discussed in [10] are derived from the decay rate of the nonincreasing sequence of singular values of A. Since singular values do not exist for noncompact operators A; we introduce stability rates in order to have a common measure for the compact and noncompact cases. Properties of these rates are illustrated by means of convolution equations in the compact case and by means of equations with multiplication operators in the noncompact case. Moreover using increasing rearrangements of the multiplier functions specific measures of ill-posedness called ill-posedness rates are considered for the multiplication operators. In this context, the character of sufficient conditions providing convergence rates of Tikhonov regularization are compared for compact operators and multiplication operators.
5

Stability Rates for Linear Ill-Posed Problems with Convolution and Multiplication Operators

Hofmann, B., Fleischer, G. 30 October 1998 (has links)
In this paper we deal with the `strength' of ill-posedness for ill-posed linear operator equations Ax = y in Hilbert spaces, where we distinguish according_to_M. Z. Nashed [15] the ill-posedness of type I if A is not compact, but we have R(A) 6= R(A) for the range R(A) of A; and the ill-posedness of type II for compact operators A: From our considerations it seems to follow that the problems with noncompact operators A are not in general `less' ill-posed than the problems with compact operators. We motivate this statement by comparing the approximation and stability behaviour of discrete least-squares solutions and the growth rate of Galerkin matrices in both cases. Ill-posedness measures for compact operators A as discussed in [10] are derived from the decay rate of the nonincreasing sequence of singular values of A. Since singular values do not exist for noncompact operators A; we introduce stability rates in order to have a common measure for the compact and noncompact cases. Properties of these rates are illustrated by means of convolution equations in the compact case and by means of equations with multiplication operators in the noncompact case. Moreover using increasing rearrangements of the multiplier functions specific measures of ill-posedness called ill-posedness rates are considered for the multiplication operators. In this context, the character of sufficient conditions providing convergence rates of Tikhonov regularization are compared for compact operators and multiplication operators.

Page generated in 0.0179 seconds