Among various nanofillers, carbon nanotubes (CNTs) have attracted a significant attention due to their excellent physical properties. Incorporation of a very low amount of CNTs in polymer matrices enhances mechanical, thermal and optical properties of conductive polymer nanocomposites (CPNs) tremendously. For mechanical sensors, the piezoresistive property of CNTs/polymer nanocomposites exhibits a great potential for the realization of stable, sensitive, tunable and cost-effective strain sensors. Achieving homogeneous CNTs dispersion within the polymer matrices, understanding their complex piezoresistivity and conduction mechanisms, as well as the response of the nanocomposites under humidity and temperature effects, is highly required for the realization of piezoresistive CNTs/polymer based nanocomposites.
This research primarily aims to synthesize and characterize CNTs/polymer based strain sensitive nanocomposites, which are cost-effective, applicable on both rigid and flexible substrates and require a non-complex fabrication process. A comprehensive understanding of the complex conduction and piezoresistive mechanisms of CNTs/polymer nanocomposites and their responses under humidity and temperature effects is another purpose of this thesis.
For this purpose, synthesis and complex electromechanical characterization of multiwalled carbon nanotubes (MWCNTs)/epoxy nanocomposites are realized. In order to realize strain sensors for the strain range up to 1 % the use of epoxy is focused due to its good adhesion, dimensional stability, and good mechanical properties. The nanocomposites with up to 1 wt.% MWCNTs are synthesized by a non-complex direct mixing method and the final nanocomposites are deposited on flexible Kapton and rigid FR4 substrates and their corresponding morphological, electrical, electromechanical, as well as the response of the nanocomposite under humidity and temperature influences, are examined. The deformation over the sensor area is tested by digital image correlation (DIC) under quasi-static uniaxial tension. Quantitative piezoresistive characterization is performed by electrochemical impedance spectroscopy (EIS) over a wide range of frequencies. Further, dispersion quality of MWCNTs in the epoxy polymer matrix is monitored by scanning electron microscopy (SEM). Additionally, in order to tailor the piezoresistivity of the strain sensor, an R-C equivalent circuit is derived based on the impedance responses and the corresponding parameters are extracted from the applied strain. Obtained SEM images confirm that MWCNTs/epoxy nanocomposites with different MWCNTs concentrations have a good homogeneity and dispersion. Atomic force microscopy (AFM) analysis show that the samples have relatively good surface topography and fairly homogeneous CNTs networks. Higher sensitivity is achieved in particular at the concentrations close to the percolation threshold. A non-linear piezoresistive behavior is observed at low MWCNTs concentrations due to the dominance of tunneling effect. The strain sensitive nanocomposites deposited
on FR4 substrates present high-performance strain sensing properties, including high sensitivity, good stability, and durability after cyclic loading and unloading. In addition, MWCNTs/epoxy nanocomposites show quite a small creep, low hysteresis under cyclic tensile and compressive loadings and fast response and recovery times. Nanocomposites provide an opportunity to measure 2-D strain in one position including amplitude and direction for complex configuration of structures in real-time systems or products. In contrast to present solutions for multi-directional strain sensing, MWCNTs/epoxy based nanocomposites give promising results in terms of durability, easy-processability, and tunable piezoresistivity. Unlike commercially-available approaches for crack/damage identification, MWCNTs/epoxy nanocomposites are capable of detecting the applied crack directly over a certain area. From the humidity influence, it has been found that resistance of nanocomposites increases with the increase of humidity exposure due to swelling of the polymer. Temperature investigations show that MWCNTs/epoxy nanocomposites give negative temperature coefficient (NTC) response due to thermal activation of charge carriers and the temperature sensitivity increases with the increase of filler concentration. The proposed approach can be further developed by combining differently fabricated sensors for realizing a compact structural health monitoring system or multi-functional sensor, where pressure, strain, temperature, and humidity can be monitored simultaneously. / Unter den verschiedenen Nanofillern haben CNTs aufgrund ihrer hervorragenden physikalischen Eigenschaften eine bedeutende Aufmerksamkeit erregt. Die Einarbeitung einer sehr geringen Menge an CNTs in Polymermatrizen verbessert die mechanischen, thermischen und optischen Eigenschaften von CPNs enorm. Für mechanische Sensoren bietet die piezoresistive Eigenschaft von CNTs/Polymer-Nanokompositen ein großes Potenzial zur Realisierung stabiler, empfindlicher, abstimmbarer und kostengünstiger Dehnungssensoren. Die Erzielung einer homogenen CNT-Dispersion innerhalb der Polymermatrizen, das Verständnis ihrer komplexen Piezoresistivitäts- und Leitungsmechanismen sowie die Reaktion der Nanokomposite unter Feuchte- und Temperatureinflüssen ist für die Realisierung piezoresistiver CNTs/Polymer-basierter Nanokomposite unerlässlich.
Diese Arbeit zielt darauf ab, CNTs/polymerbasierte dehnungsempfindliche Nanokomposite herzustellen und zu charakterisieren. Diese Nanokompositen sollen kostengünstig, sowohl auf starren als auch auf flexiblen Substraten anwendbar sein und ein nicht komplexes Herstellungsverfahren erfordern. Ein umfassendes Verständnis der komplexen leitungs- und piezoresistive Mechanismen von CNTs/ Polymer-Nanokompositen und deren Reaktionen unter Feuchtigkeits- und Temperatureinflüssen ist ein weiteres Ziel dieser Arbeit.
Zu diesem Zweck werden Synthese und komplexe elektromechanische Charakterisierung von MWCNTs/epoxy nanocomposites realisiert. Um Dehnungssensoren für den Dehnungsbereich bis zu 1 % realisieren zu können, wird der Einsatz von Epoxy aufgrund seiner guten Haftung, Dimensionsstabilität und guten mechanischen Eigenschaften fokussiert. Zufällig verteilte MWCNTs mit bis zu 1 wt.% MWCNTs-Konzentration ist durch ein direktes Mischen synthetisiert und die Nanokomposite werden auf flexiblen Kapton und starren FR4 Substraten durch Siebdruck appliziert und anschließend deren morphologische, elektrische, elektromechanische sowie die Reaktion des Nanocomposits unter Feuchtigkeits- und Temperatureinflüssen untersucht. Die Verformung über den Sensorbereich wird duch die Digital Image Correlation (DIC) Methode unter quasi-statischer uniaxialer Spannung getestet. Die quantitative piezoresistive Charakterisierung wird mit elektrische Impedanzspektroskopie (EIS) in einem breitem Frquenzspektrum durchgeführt. Ferner wird die Dispersionsqualität von MWCNTs in der Epoxidepolymermatrix durch Scanning Electron Microscopy (SEM) überprüft. Zusätzlich ist, um die Piezoresistivität des Dehnungssensors abzustimmen, eine RC-Äquivalenzschaltung auf der Grundlage der Impedanzantworten abgeleitet und die entsprechenden Parameter unter Belastung extrahiert. Erhaltene SEM-Bilder bestätigen, dass MWCNTs/Epoxide-Nanokomposite mit unterschiedlichen MWCNTs-Konzentrationen eine gute Homogenität und Dispersion aufweisen. Die atomic force microscopy (AFM) Untersuchung zeigt, dass die Proben relativ gute Oberflächentopographie und ziemlich homogene CNT-Netzwerke aufweisen. Eine höhere Empfindlichkeit wird insbesondere bei den Konzentrationen nahe der Perkolationsschwelle erreicht. Eine nichtlineare Piezoresistivität wird bei niedrigen MWCNTs Konzentrationen aufgrund der Dominanz des Tunnelwirkungseffekts beobachtet. Die auf FR4-Substraten applizierten dehnungsempfindlichen Nanokomposite weisen ausgezeichnete Dehnungsmessungseigenschaften einschließlich hohe Empfindlichkeit, gute Stabilität und Haltbarkeit nach zyklischer Be- und Entlastung auf. Darüber hinaus zeigen MWCNTs/Epoxide-Nanokomposite ein geringes Kriechen, eine kleine Hysterese unter zyklischen Zug- und Druckbelastungen, sowie schnelle Reaktionsund Wiederherstellungszeiten.
Nanokomposite bieten die Möglichkeit, 2-D-Dehnungen in einer Position einschließlich Amplitude und Richtung innerhalb einer Materialstruktur in Echtzeitsystemen oder Produkten zu messen. Im Gegensatz zu aktuellen Lösungen für die multi-direktionale Dehnungsmessung, bieten die MWCNTs/Epoxide-Nanokomposite vielversprechende Ergebnisse in Bezug auf Langlebigkeit, leichte Verarbeitung und einstellbare Piezoresistivität. Im Unterschied zu kommerziell verfügbaren Ansätzen wird festgestellt, dassMWCNTs/Epoxide-Nanokomposite zur Riss-/Schadenserkennung in der Lage sind, den angelegten Riss direkt über einen bestimmten Bereich zu detektieren. Aus dem Einfluss der Feuchtigkeit hat sich herausgestellt, dass die Resistenz von Nanokompositen mit zunehmender Feuchtigkeitsbelastung durch Quellung des Polymers zunimmt. Temperaturuntersuchungen zeigen, dass MWCNTs/Epoxide-Nanokomposite aufgrund der thermischen Aktivierung von Ladungsträgern auf Temperatureinflüsse reagieren und die Temperaturempfindlichkeit mit der Erhöhung der Füllstoffkonzentration zunimmt. Der vorgeschlagene Ansatz kann durch die Kombination unterschiedlich hergestellte Sensoren zur Realisierung eines kompakten zur Überwachung des Zustands von Strukturen oder von multifunktionalen Sensoren weiterentwickelt werden, bei denen gleichzeitig Druck, Dehnung, Temperatur und Feuchtigkeit überwacht werden können.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:20878 |
Date | 03 April 2018 |
Creators | Sanli, Abdulkadir |
Contributors | Kanoun, Olfa, Fröhlich, Thomas, Kanoun, Olfa, Technische Universität Chemnitz |
Publisher | Universitätsverlag der Technischen Universität Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | German |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | urn:nbn:de:bsz:ch1-qucosa-209652, qucosa:20552 |
Page generated in 0.0131 seconds