Return to search

[en] EXTREME VALUE STATISTICS OF RANDOM NORMAL MATRICES / [pt] ESTATÍSTICAS DE VALOR EXTREMO DE MATRIZES ALEATÓRIAS NORMAIS

[pt] Com diversas aplicações em matemática, física e finanças, Teoria das Matrizes Aleatórias (RMT) recentemente atraiu muita atenção. Enquanto o RMT Hermitiano é de especial importância na física por causa da Hermenticidade de operadores associados a observáveis em mecânica quântica, O RMT não-Hermitiano também atraiu uma atenção considerável, em particular porque eles podem ser usados como modelos para sistemas físicos dissipativos ou abertos. No entanto, devido à ausência de uma simetria
simplificada, o estudo de matrizes aleatórias não-Hermitianas é, em geral, uma tarefa difícil. Um subconjunto especial de matrizes aleat órias não-Hermitianas, as chamadas matrizes aleatórias normais, são modelos interessantes a serem considerados, uma vez que oferecem mais simetria, tornando-as mais acessíveis às investigções analíticas. Por definição, uma matriz normal M é uma matriz quadrada que troca com seu adjunto Hermitiano. Nesta tese, amplicamos a derivação de estatísticas de valores extremos (EVS) de matrizes aleatórias Hermitianas, com base na abordagem de polinômios ortogonais, em matrizes aleatórias normais e em gases Coulomb 2D em geral. A força desta abordagem a sua compreensão física e intuitiva. Em primeiro lugar, essa abordagem fornece uma derivação alternativa de resultados na literatura. Precisamente falando, mostramos a convergência do autovalor redimensionado com o maior módulo de um conjunto de Ginibre para uma distribuição de Gumbel, bem como a universalidade para um potencial arbitrário radialmente simtérico que atenda certas condições. Em segundo lugar, mostra-se que esta abordagem pode ser generalizada para obter a convergência do autovalor com menor módulo e sua universalidade no limite interno finito do suporte do autovalor. Um aspecto interessante deste trabalho é o fato de que podemos usar técnicas padrão de matrizes aleatórias Hermitianas para obter o EVS de matrizes aleatórias não Hermitianas. / [en] With diverse applications in mathematics, physics, and finance, Random Matrix Theory (RMT) has recently attracted a great deal of attention. While Hermitian RMT is of special importance in physics because of the Hermiticity of operators associated with observables in quantum mechanics, non-Hermitian RMT has also attracted a considerable attention, in particular because they can be used as models for dissipative or open physical systems. However, due to the absence of a simplifying symmetry, the study of non-Hermitian random matrices is, in general, a diffcult task. A special subset of non-Hermitian random matrices, the so-called random normal matrices, are interesting models to consider, since they offer more symmetry, thus making them more amenable to analytical investigations. By definition, a normal matrix M is a square matrix which commutes with its Hermitian adjoint, i.e., (M, M (1)). In this thesis, we present a novel derivation of extreme value statistics (EVS) of Hermitian random matrices, namely the approach of orthogonal polynomials, to normal random matrices and 2D Coulomb gases in general. The strength of this approach is its physical and intuitive understanding. Firstly, this approach provides an alternative derivation of results in the literature. Precisely speaking, we show convergence of the rescaled eigenvalue with largest modulus of a Ginibre ensemble to a Gumbel distribution, as well as universality for an arbitrary radially symmetric potential which meets certain conditions. Secondly, it is shown that this approach can be generalised to obtain convergence of the eigenvalue with smallest modulus and its universality at the finite inner edge of the eigenvalue support. One interesting aspect of this work is the fact that we can use standard techniques from Hermitian random matrices to obtain the EVS of non-Hermitian random matrices.

Identiferoai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:36996
Date19 February 2019
CreatorsROUHOLLAH EBRAHIMI
ContributorsHIROSHI NUNOKAWA
PublisherMAXWELL
Source SetsPUC Rio
LanguageEnglish
Detected LanguagePortuguese
TypeTEXTO

Page generated in 0.002 seconds