[pt] Otimização de portfólio tradicionalmente assume ter conhecimento da
distribuição de probabilidade dos retornos ou pelo menos algum dos seus
momentos. No entanto, é sabido que a distribuição de probabilidade dos retornos
muda com frequência ao longo do tempo, tornando difícil a utilização
prática de modelos puramente estatísticos, que confiam indubitavelmente
em uma distribuição estimada. Em contrapartida, otimização robusta considera
um completo desconhecimento da distribuição dos retornos, e por
isto, buscam uma solução ótima para todas as realizações possíveis dentro
de um conjunto de incerteza dos retornos. Mais recentemente na literatura,
técnicas de distributionally robust optimization permitem lidar com
a ambiguidade com relação à distribuição dos retornos. No entanto essas
técnicas dependem da construção do conjunto de ambiguidade, ou seja, distribuições
de probabilidade a serem consideradas. Neste trabalho, propomos
a construção de conjuntos de ambiguidade poliédricos baseado somente em
uma amostra de retornos. Nestes conjuntos, as relações entre variáveis são
determinadas pelos dados de maneira não paramétrica, sendo assim livre
de possíveis erros de especificação de um modelo estocástico. Propomos um
algoritmo para construção do conjunto e, dado o conjunto, uma reformulação
computacionalmente tratável do problema de otimização de portfólio.
Experimentos numéricos mostram que uma melhor performance do modelo
em comparação com benchmarks selecionados. / [en] Portfolio optimization traditionally assumes knowledge of the probability
distribution of returns or at least some of its moments. However is well
known that the probability distribution of returns changes over time, making
difficult the use of purely statistic models which undoubtedly rely on
an estimated distribution. On the other hand robust optimization consider
a total lack of knowledge about the distribution of returns and therefore it
seeks an optimal solution for all the possible realizations wuthin a set of
uncertainties of the returns. More recently the literature shows that distributionally
robust optimization techniques allow us to deal with ambiguity
regarding the distribution of returns. However these methods depend on
the construction of the set of ambiguity, that is, all distribution of probability
to be considered. This work proposes the construction of polyhedral
ambiguity sets based only on a sample of returns. In those sets, the relations
between variables are determined by the data in a non-parametric
way, being thus free of possible specification errors of a stochastic model.
We propose an algorithm for constructing the ambiguity set, and then a
computationally treatable reformulation of the portfolio optimization problem.
Numerical experiments show that a better performance of the model
compared to selected benchmarks.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:36002 |
Date | 07 January 2019 |
Creators | JOAO GABRIEL FELIZARDO S SCHLITTLER |
Contributors | MARCOS CRAIZER, DAVI MICHEL VALLADAO, DAVI MICHEL VALLADAO, DAVI MICHEL VALLADAO, DAVI MICHEL VALLADAO |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | Portuguese |
Detected Language | Portuguese |
Type | TEXTO |
Page generated in 0.0032 seconds