1 |
[en] GENETIC-NEURAL MODEL FOR PORTFOLIO OPTIMIZATION WITH FINANCIAL OPTIONS IN THE BRAZILIAN MARKET / [pt] MODELO GENÉTICO-NEURAL PARA OTIMIZAÇÃO DE CARTEIRAS COM OPÇÕES FINANCEIRAS NO MERCADO BRASILEIROMICHEL CARDONSKY CASPARY 18 July 2012 (has links)
[pt] A presente dissertação tem por objetivo desenvolver um modelo inteligente
que permita, por uma análise quantitativa e probabilística, gerar uma carteira
otimizada composta de um ativo financeiro e opções sobre este ativo. Procurou-se
estudar inicialmente as características da distribuição de retornos e da volatilidade
das ações mais líquidas da Bolsa de Valores de São Paulo, no período de Jan/2005
a Jul/2010, através de regressões polinomiais univariadas e bivariadas. Observouse
características como a de reversão a média da volatilidade, correlação da
volatilidade futura com um período histórico mais longo e outro mais curto e uma
relação possivelmente quadrática entre a volatilidade histórica e a volatilidade
futura. Desenvolveu-se então, satisfatoriamente, uma rede neural para prever a
volatilidade futura das ações, por este ser o fator mais crítico para se determinar o
preço de uma opção. Utilizando-se da precificação das opções, avaliou-se o
desempenho de algoritmos genéticos na otimização de carteiras estruturadas com
esses derivativos, com três funções de avaliação diferentes, a fim de aumentar o
potencial retorno de um investimento, minimizando seus riscos. O sistema
evolucionário implementado demonstrou ser satisfatório quando comparado a
carteira otimizada com diversas outras estratégias comuns de mercado,
demonstrando ser uma alternativa de apoio a decisão para investidores e gestores
de carteiras. / [en] This dissertation develops an intelligent, quantitative and probabilistic
model to determine an optimal composition of a portfolio consisting of a financial
asset and options over this asset. Initially we studied the characteristics of the
historical distribution of returns and volatility of the most liquid stocks from the
BOVESPA Stock Exchange, from January 2005 to July 2010, through a
univariate and a bivariate polynomial regression. Characteristics such as mean
reversion of volatility, strong correlation of historical and future volatility and a
quadratic polynomial relationship between them were observed. A neural network
was then developed to predict the future volatility of these stocks, since that is the
most critical variable in determining an option´s price. Using the option pricing,
we evaluated the performance of genetic algorithms in optimizing portfolios,
structured with these derivatives, with three different evaluation functions in order
to increase the potential return of investments while minimizing downside risks.
The developed evolutionary system showed satisfactory results when the optimal
portfolio was compared with several other market option strategies, demonstrating
to be a relevant decision support system for investors and portfolio managers.
|
2 |
[pt] OTIMIZAÇÃO DE PORTFÓLIO ROBUSTA SOB VISÕES CONFLITANTES: UMA ABORDAGEM BLACK-LITTERMAN / [en] ROBUST PORTFOLIO OPTIMIZATION UNDER CONFLICTING VIEWS: A BLACK-LITTERMAN MODEL APPROACHDIMAS LEAO RAMOS 02 October 2019 (has links)
[pt] Black e Litterman propuseram um modelo de otimização de portfólio que combina visões do investidor sobre retornos esperados de ativos com o equilíbrio neutro de mercado. No entanto, especificar visões sobre uma carteira de investimentos é uma tarefa difícil, especialmente quando os investidores têm opiniões conflitantes sobre o mesmo ativo. Neste trabalho, é proposto uma nova formulação para otimização de carteiras, que é robusta diferentes à visões do investidor. A nossa abordagem foi testada em dados sintéticos e dados reais disponíveis em uma plataforma do Banco Central do Brasil. Esta plataforma consolida projeções macroeconômicas de mais de uma centena de analistas profissionais e disponibiliza para o mercado numa base semanal. Por fim, é comparado o desempenho desta formulação robusta com o modelo Black-Litterman tradicional frequentemente utilizado na indústria financeira. Os resultados mostram que a metodologia robusta pode providenciar melhor desempenho ajustado ao risco em comparação com o modelo orignial e são menos sensíveis às visões do investor. / [en] Black and Litterman proposed a portfolio optimization model that combines investor s views on future asset s returns with neutral market equilibrium. However, specifying portfolio views is a challenging task, specially when investors have conflicting opinions on the same asset. In this thesis, we suggest a new portfolio optimization formulation that is robust for investor s views. Our approach was tested on synthetic and real data available on a framework developed by Central Bank of Brazil. This online framework collects projections on main macroeconomics variables from more than a hundred professional forecasters and provides public online access on a weekly basis. The performance of this new robust formulation is compared with the traditional Black-Litterman model. The result show that our robust methodology can provide better risk adjusted performance compared to the orignial model and are less sensitive to incorrect inverstor views.
|
3 |
[en] PORTFOLIO OPTIMIZATION OF ENERGY CONTRACTS IN HYDROTHERMAL SYSTEMS WITH CENTRAL DISPATCH / [pt] OTIMIZAÇÃO DE PORTFÓLIO DE CONTRATOS DE ENERGIA EM SISTEMAS HIDROTÉRMICOS COM DESPACHO CENTRALIZADOLUIZ GUILHERME BARBOSA MARZANO 03 August 2004 (has links)
[pt] Otimização de portfólio é uma técnica largamente utilizada
para seleção de investimentos na área econômico-financeira.
A primeira proposição neste sentido foi o modelo média-
variância de Harry Markowitz, que utiliza, respectivamente,
a média e a variância dos retornos do portfólio como
medidas de retorno e de risco. Desde Markowitz muitas
outras abordagens, que adotam medidas de risco
alternativas, têm sido propostas, como por exemplo o modelo
MiniMax, o modelo de desvio absoluto médio, a programação
objetiva, o Value-at-Risk (VaR), o Conditional Value-at-
Risk (CVaR) etc. Neste trabalho a idéia de otimização de
portfólio é aplicada à área de comercialização de energia.
O objetivo é apresentar abordagens para otimização de
portfólio de contratos de energia, de modo a se definir a
estratégia de comercialização de energia que maximize o
valor esperado dos valores presentes das remunerações
líquidas de uma empresa geradora, sujeito ao controle de
sua exposição ao risco. São propostas três abordagens: a
primeira adota a variância dos valores presentes das
remunerações líquidas como medida de risco, a segunda
adota o mínimo da distribuição como medida de risco e a
terceira adota o CVaR como medida de risco. Em duas das
três abordagens propostas, assume-se que os contratos
candidatos a compor o portfólio são divididos em dois
grupos: contratos de decisão imediata e possibilidades
futuras de contratação. Com isto, a formulação do problema
resulta em um modelo de otimização estocástica de dois
estágios, que é resolvido via programação dinâmica dual
estocástica. Resultados numéricos para o sistema elétrico
brasileiro são apresentados e discutidos. / [en] Portfolio optimization has been widely used to select
investments in the financial area. The first proposal in
this topic was the Markowitz mean-variance approach, which
uses, respectively, the mean and the variance as measures of
portfolio return and risk. Since Markowitz many other
approaches, which adopt alternative risk measures, have
been proposed, e.g. the MiniMax model, the Mean Absolute
Deviation model, the Goal Programming, the Value-at-Risk
(VaR) and the Conditional Value-at-Risk (CVaR) etc. In this
work the idea of portfolio optimization is applied to the
energy commercialization area. The objective is to present
approaches to portfolio optimization of energy contracts in
order to determine the energy commercialization strategy
that maximizes the expected present value of the cash
flow of a generating company subject to the control of its
risk exposure. Three approaches are proposed: the first
adopts the variance of the present values as risk measure,
the second adopts the minimum present value as risk measure
and the third adopts the CVaR as risk measure. In the
second and in the third approaches are assumed that the
candidate contracts are divided into two sets: those of
immediate decision and those that can be contracted in the
future. This modeling leads to a large-scale two-stage
stochastic programming problem that is solved by stochastic
dual dynamic programming. Numerical results for the
Brazilian power system are presented and discussed.
|
4 |
[en] ASSET AND LIABILITY MANAGEMENT FOR INDIVIDUAL INVESTORS / [pt] GERENCIAMENTO DE ATIVO E PASSIVO PARA INVESTIDORES INDIVIDUAIS18 November 2021 (has links)
[pt] Todos os investidores, indivíduos e instituições, possuem obrigações e objetivos financeiros futuros. Por esse motivo, devem tomar decisões de investimento que sirvam a tais propósitos, considerando os riscos a que estão sujeitos. Com a finalidade de auxiliar o processo decisório, pode-se lançar mão de políticas de investimento ótimo, como a Gerência de Ativos e Passivos (Asset and Liability Management - ALM), objeto do presente estudo. O ALM é uma forma de combinar os ativos e passivos dos investidores, buscando alcançar as suas finalidades em termos financeiros. No que se refere aos investidores individuais,
tema abordado neste trabalho, os supracitados objetivos podem corresponder, por exemplo, à aposentadoria almejada, bem como aos gastos com a educação dos filhos. Sendo assim, o presente estudo propõe apresentar uma metodologia de otimização sob incerteza, por meio da utilização de programação estocástica e técnicas de otimização de portfolio, aplicadas ao problema de gerenciamento de
ativos e passivos de um investidor individual. O estudo tem como enfoque um modelo de programação linear multiperíodo, desenvolvido por Consiglio, Cocco e Zenios (2002), o qual maximiza a riqueza esperada do investidor no final do horizonte de planejamento, dado o nível de tolerância ao risco do indivíduo. Esse
modelo será validado através da variação dos níveis de aversão ao risco do investidor, dos horizontes de planejamento e do retorno alvo desejado pelo investidor para ser alcançado no período final. / [en] All investors, individuals and institutions, have obligations and financial future goals. For this reason, they should make investment decisions that serve this purpose considering the risks they face. To assist in making decisions, it is possible to use the optimal investment policies, as the Asset and Liability Management, object of this work. The ALM, as is known, is a way to combine the assets and liabilities of investors seeking to achieve their goals in financial terms. In the case of individuals investors these goals can be seen as the individual s retirement and children s tuition. The present work proposes a methodology for optimization under uncertainty, employing both stochastic programming and portfolio optimization techniques, applied to the problem of managing assets and liabilities for an individual investor. The study is focused on a multi-period linear programming model developed by Consiglio, Cocco and Zenios (2002), which maximizes the expected wealth of the investor at the end of the planning horizon, given the individual s risk tolerance level. This model will be validated through the variation of the risk aversion level, the planning horizons and the target return that should be achieved on the final period.
|
5 |
[en] ALGORITHMS FOR ONLINE PORTFOLIO SELECTION PROBLEM / [pt] ALGORITMOS PARA O PROBLEMA DE SELEÇÃO ONLINE DE PORTFOLIOSCHARLES KUBUDI CORDEIRO E SILVA 15 April 2019 (has links)
[pt] A otimização online de portfólios é um problema de engenharia financeira que consiste na escolha sequencial de alocação de capital entre um conjunto de ativos, com o objetivo de maximizar o retorno acumulado no longo prazo. Com o avanço dos estudos de modelos de machine learning, diversos algorítmos estão sendo utilizados para resolver esse problema. Uma série de algoritmos seguem a metodologia Follow-the-winner (FTW) , onde o peso de ações com boa performance é aumentado baseado na hipótese de que a tendência de alta será mantida; outros seguem a metodologia inversa Follow-the-loser (FTL), em que ações com má performance tem seu peso aumentado apostando em uma reversão dos preços. Algoritmos estado-da-arte do tipo FTW possuem garantia teórica de se aproximar da performance da melhor ação escolhida de antemão, entretanto, algoritmos do tipo FTL tem performance superior observada empiricamente. Nosso trabalho busca explorar a ideia de aprender quando utilizar cada uma das
duas categorias. Os mecanismos utilizados são algoritmos de online learning com flexibilidade para assumir ambos comportamentos. Foi realizado um estudo da literatura sobre indicadores de memória em séries financeiras e sua possível utilização de forma explícita para escolha entre FTL e FTW. Posteriormente, propomos um método de se realizar o aprendizado entre essas duas categorias de forma online e de forma dinâmica para utilização em algoritmos de online learning. Em nossos experimentos, o método proposto
supera o benchmark estabelecido UCRP com excesso de retorno de 36.76 por cento. / [en] Online portfolio selection is a financial engineering problem which aims to sequentially allocate capital among a set of assets in order to maximize long-term return. With the recent advances in the field of machine learning, several models have been proposed to address this problem. Some algorithms approach the problem with a Follow-the-winner (FTW) methodology, which increases the weights of more successful stocks based on their historical performance. Contrarily, a second approach, Follow-theloser (FTW), increases the weights of less successful stocks, betting on the reversal of their prices. Some state-of-the-art FTW type algorithms have the guarantee to asymptotically approach the same performance as the best stock chosen in hindsight, while FTL algorithms have empirical evidence of overperforming the previous. Our goal is to explore the idea of learning when to use each of those two algorithm categories. We do this by using online learning algorithms that are capable of switching between the described regimes. We review the literature for existing measures of time series memory and predictability, and explicitly use this information for chosing between FTW and FTL. Later, we propose a method for choosing between this two types of algorithms in an online and dynamic manner for usage together with online learning algorithms. The method outperforms the chosen benchmark UCRP in our experiments with 36.76 percent excess returns.
|
6 |
[pt] AVALIAÇÃO DE PORTFÓLIO EM GERAÇÃO TERMELÉTRICA SOB INCERTEZA: UMA METODOLOGIA HÍBRIDA UTILIZANDO NÚMEROS FUZZY, OPÇÕES REAIS E OTIMIZAÇÃO POR ALGORITMOS GENÉTICOS / [en] THERMAL POWER PORTFOLIO VALUATION UNDER UNCERTAINTY: A HYBRID METHODOLOGY USING FUZZY NUMBERS, REAL OPTIONS AND OPTIMIZATION BY GENETIC ALGORITHMSWALLACE JOSE DAMASCENO DO NASCIMENTO 11 July 2017 (has links)
[pt] Os grandes agentes do mercado de energia dedicam muitos esforços na avaliação e decisão da alocação ótima de capital para a implementação de projetos, em decorrência do grande número de projetos candidatos em seus portfólios de investimentos. Essas decisões visam escolher o subconjunto de projetos a ser implementado, pois os recursos orçamentários são geralmente menores que o necessário para a implementação de todos eles. Muitos são os riscos apresentados, e quanto mais riscos e incertezas, maiores se tornam as dificuldades de avaliação e decisões de investimento de maneira otimizada. As
metodologias clássicas para avaliação de portfólios de projetos de investimento são baseadas em maximizar os retornos (VPL, TIR, etc) e minimizar o risco (desvio-padrão do VPL, variância, etc). Muitas vezes, estes métodos tradicionais de avaliação podem não conseguir tratar adequadamente as flexibilidades gerenciais (Opções Reais) características dos projetos, assim como os riscos e incertezas, devido às possíveis dificuldades de solução e modelagem matemática (multi-variáveis) dos problemas. O desenvolvimento e aplicação de modelos alternativos, tais como os baseados na Teoria de Opções Reais, inclusive com a utilização de métodos de Inteligência Computacional, podem se mostrar mais adequados para estes problemas. Nesta tese é desenvolvida uma metodologia híbrida, apresentando um modelo de Opções Reais Fuzzy para a avaliação de projetos de Revamp por um agente do mercado de Geração Termelétrica de Energia, a partir de um Portfólio de Opções Reais em ambiente de incertezas. Para a seleção do subconjunto de projetos por faixa orçamentária, é aplicado um Algoritmo Genético para otimização multi-critério, através da utilização de um índice de ponderação retorno x risco (lâmbda). / [en] Large players in energy market dedicate many efforts in valuation and optimal capital allocation decision for their project implementation, due the large candidate projects number in their investment portfolios. These decisions aim to choose the projects subset to be implemented, because the monetary resources are
generally smaller than necessary for all projects implementation. There are many risks, and with risks and uncertainties, greater become the difficulties in analysis and optimally investment decisions. The classical methods to investment portfolios are based on to maximize returns (NPV, IRR, among others) and to
minimize risks (NPV standard deviation, variance, among others). Often, these traditional methods may not be able to handle properly the projects managerial flexibilities (Real Options), as well the risks and uncertainties, due to possible solution difficulties and mathematical modeling problems (multi variables).
Alternative models development and implementation, such as those based on Real Options Theory, including the use of Computational Intelligence methods, may be more suitable for these problems. In this thesis, a hybrid methodology is developed, presenting a Fuzzy Real Options model for Revamp projects
valuation by a Thermoelectric Power Generation market player, from a Real Options Portfolio in uncertainties environment. For selecting the projects subset by budget range, a multi-criteria Genetic Algorithm optimization is applied, using a weighting return x risk index (lambda).
|
7 |
[en] POLIEDRO: A NOVEL ANALYTICS FRAMEWORK WITH NON-PARAMETRIC DATA-DRIVEN REGULARIZATION / [pt] POLIEDRO: UM NOVO FRAMEWORK ANALÍTICO COM REGULARIZAÇÃO NÃO PARAMÉTRICA ORIENTADA POR DADOSTOMAS FREDERICO MACIEL GUTIERREZ 31 March 2025 (has links)
[pt] PolieDRO é um novo framework com aplicações tanto no âmbito preditivo quanto prescritivo. Ela aproveita o poder e a flexibilidade da Otimização
Robusta a Distribuições (DRO) orientada por dados para evitar a necessidade
de hiperparâmetros de regularização, ao mesmo tempo em que extrai estrutura
dos dados subjacentes.
No âmbito preditivo, a literatura recente mostra que métodos tradicionais
de aprendizado de máquina, como SVM e (square-root) LASSO, podem
ser formulados como problemas de DRO baseados em métricas de distância
de Wasserstein. Inspirados por esses resultados, propomos um conjunto de
ambiguidades sem hiperparâmetros que explora a estrutura poliédrica de
invólucros convexos orientados por dados, gerando métodos de regressão
e classificação computacionalmente viáveis para qualquer função de perda
convexa. Resultados numéricos baseados em 100 bancos de dados do mundo
real e um extenso experimento com dados gerados sinteticamente mostram que
nossos métodos superam consistentemente seus equivalentes tradicionais.
No âmbito prescritivo, desenvolvemos um modelo de otimização de portfólio no qual a abordagem DRO é empregada simultaneamente nos níveis de
risco e retorno. Aplicando este modelo a dados financeiros reais que abrangem várias décadas, alcançamos um desempenho consistentemente superior
em comparação com um benchmark tradicional. / [en] PolieDRO is a novel analytics framework with applications to both
predictive and prescriptive realms. It harnesses the power and flexibility of
Data-Driven Distributionally Robust Optimization (DRO) to circumvent the
need for regularization hyperparameters, while extracting structure from the
underlying data.
In the field of predictive modeling, recent literature shows that traditional
machine learning methods such as SVM and (square-root) LASSO can be
written as Wasserstein-based DRO problems. Inspired by those results we
propose a hyperparameter-free ambiguity set that explores the polyhedral
structure of data-driven convex hulls, generating computationally tractable
regression and classification methods for any convex loss function. Numerical
results based on 100 real-world databases and an extensive experiment with
synthetically generated data show that our methods consistently outperform
their traditional counterparts.
In the prescriptive realm, we develop a portfolio optimization model
that employs the DRO approach simultaneously at the risk and return levels.
Applying this model to real financial data spanning several decades, we achieve
consistent superior performance compared to a benchmark.
|
8 |
[en] PORTFOLIO SELECTION VIA DATA-DRIVEN DISTRIBUTIONALLY ROBUST OPTIMIZATION / [pt] SELEÇÃO DE CARTEIRAS DE ATIVOS FINANCEIROS VIA DATA-DRIVEN DISTRIBUTIONALLY ROBUST OPTIMIZATIONJOAO GABRIEL FELIZARDO S SCHLITTLER 07 January 2019 (has links)
[pt] Otimização de portfólio tradicionalmente assume ter conhecimento da
distribuição de probabilidade dos retornos ou pelo menos algum dos seus
momentos. No entanto, é sabido que a distribuição de probabilidade dos retornos
muda com frequência ao longo do tempo, tornando difícil a utilização
prática de modelos puramente estatísticos, que confiam indubitavelmente
em uma distribuição estimada. Em contrapartida, otimização robusta considera
um completo desconhecimento da distribuição dos retornos, e por
isto, buscam uma solução ótima para todas as realizações possíveis dentro
de um conjunto de incerteza dos retornos. Mais recentemente na literatura,
técnicas de distributionally robust optimization permitem lidar com
a ambiguidade com relação à distribuição dos retornos. No entanto essas
técnicas dependem da construção do conjunto de ambiguidade, ou seja, distribuições
de probabilidade a serem consideradas. Neste trabalho, propomos
a construção de conjuntos de ambiguidade poliédricos baseado somente em
uma amostra de retornos. Nestes conjuntos, as relações entre variáveis são
determinadas pelos dados de maneira não paramétrica, sendo assim livre
de possíveis erros de especificação de um modelo estocástico. Propomos um
algoritmo para construção do conjunto e, dado o conjunto, uma reformulação
computacionalmente tratável do problema de otimização de portfólio.
Experimentos numéricos mostram que uma melhor performance do modelo
em comparação com benchmarks selecionados. / [en] Portfolio optimization traditionally assumes knowledge of the probability
distribution of returns or at least some of its moments. However is well
known that the probability distribution of returns changes over time, making
difficult the use of purely statistic models which undoubtedly rely on
an estimated distribution. On the other hand robust optimization consider
a total lack of knowledge about the distribution of returns and therefore it
seeks an optimal solution for all the possible realizations wuthin a set of
uncertainties of the returns. More recently the literature shows that distributionally
robust optimization techniques allow us to deal with ambiguity
regarding the distribution of returns. However these methods depend on
the construction of the set of ambiguity, that is, all distribution of probability
to be considered. This work proposes the construction of polyhedral
ambiguity sets based only on a sample of returns. In those sets, the relations
between variables are determined by the data in a non-parametric
way, being thus free of possible specification errors of a stochastic model.
We propose an algorithm for constructing the ambiguity set, and then a
computationally treatable reformulation of the portfolio optimization problem.
Numerical experiments show that a better performance of the model
compared to selected benchmarks.
|
Page generated in 0.0589 seconds