Return to search

Étude de l'approximation hydrostatique de Stokes & d'une équation dégénérée

Dans ce travail, on étudie quelques problèmes d'équations aux dérivées partielles elliptiques que l'on rencontre dans la modélisation d'écoulements réels, comme par exemple la circulation océanique globale. La thèse est divisée en trois parties. La partie 1 est consacrée à l'étude du problème de Stokes dit « hydrostatique » en dimension trois posé dans un domaine borné non nécessairement cylindrique. L'originalité de ces travaux provient du fait que l'on considère des données non homogènes, tant dans l'équation de conservation de la masse que sur la condition aux limites portée sur la vitesse verticale. Pour traiter cette nouvelle situation, on se ramène par équivalence à résoudre un système d'équations primitives linéarisées non homogènes, que l'on résout avec une approche entièrement fonctionnelle et optimale grâce au cadre fonctionnel que l'on considère. Par conséquent, on montre deux cas d'existence et d'unicité d'une solution faible au problème de Stokes hydrostatique avec conditions non homogènes. Les partie 2 et 3 sont consacrées à l'étude d'un modèle elliptique avec un coefficient de diffusion qui peut dégénérer. Ce type d'équations intervient également dans des problèmes géophysiques, que ce soit dans des questions de modélisation de circulation globale, mais aussi dans des problèmes d'infiltration et de milieux poreux. On étudie le cas du demi-espace pour lequel on obtient une théorie optimale de régularité des solutions faibles. On traite enfin le cas général pour lequel on obtient un cas d'existence et d'unicité de solution faible et un résultat de régularité associé.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00444885
Date27 November 2009
CreatorsDahoumane, Fabien
PublisherUniversité de Pau et des Pays de l'Adour
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0017 seconds