Spelling suggestions: "subject:"del’espace"" "subject:"del'espace""
1 |
Problèmes elliptiques en domaines non bornés: une approche dans des espaces de Sobolev avec poidsBonzom, Florian 28 November 2008 (has links) (PDF)
L'objet de cette thèse est la résolution de problèmes elliptiques dans différents domaines non bornés. Dans un premier temps, nous étudions l'opérateur de Laplace dans un domaine extérieur avec des conditions aux limites non homogènes mêlées, puis dans un domaine extérieur dans le demi-espace avec des conditions de type Dirichlet, Neumann et mêlées. Nous considérons ensuite le problème de Stokes dans trois géométries non bornées: un domaine extérieur dans le demi-espace, un demi-espace perturbé et un domaine avec ouverture. Nous donnons pour chacun de ces problèmes des résultats fondamentaux d'existence et d'unicité en théorie L^p (avec p strictement compris entre 1 et l'infini) dans le cadre fonctionnel des espaces de Sobolev avec poids. De plus, nous nous intéressons également aux cas des solutions fortes (avec en particulier des résultats de régularité) et aux cas des solutions très faibles.
|
2 |
Espaces de Sobolev avec poids et problèmes elliptiques non homogènes dans le demi-espaceRaudin, Yves 30 November 2007 (has links) (PDF)
L'objet de cette thèse est la résolution de problèmes elliptiques dans le demi-espace. En partant des problèmes déjà traités de Dirichlet et de Neumann pour l'opérateur de Laplace dans cette géométrie, nous avons exploré différents aspects du problème biharmonique et de celui de Stokes. Nous donnons des résultats fondamentaux d'existence, d'unicité et de régularité. Le cadre fonctionnel dans lequel nous nous plaçons est celui des espaces de Sobolev avec poids. Nous considérons ici des conditions aux limites non homogènes qu'on suppose également dans des espaces de Sobolev avec poids. Un aspect non négligeable de cette étude a trait aux conditions aux limites singulières et aux solutions très faibles qui en découlent. Il y est aussi abordé la question des conditions aux limites non standard, en particulier de type Navier pour le problème de Stokes.
|
3 |
Étude de l'approximation hydrostatique de Stokes & d'une équation dégénéréeDahoumane, Fabien 27 November 2009 (has links) (PDF)
Dans ce travail, on étudie quelques problèmes d'équations aux dérivées partielles elliptiques que l'on rencontre dans la modélisation d'écoulements réels, comme par exemple la circulation océanique globale. La thèse est divisée en trois parties. La partie 1 est consacrée à l'étude du problème de Stokes dit « hydrostatique » en dimension trois posé dans un domaine borné non nécessairement cylindrique. L'originalité de ces travaux provient du fait que l'on considère des données non homogènes, tant dans l'équation de conservation de la masse que sur la condition aux limites portée sur la vitesse verticale. Pour traiter cette nouvelle situation, on se ramène par équivalence à résoudre un système d'équations primitives linéarisées non homogènes, que l'on résout avec une approche entièrement fonctionnelle et optimale grâce au cadre fonctionnel que l'on considère. Par conséquent, on montre deux cas d'existence et d'unicité d'une solution faible au problème de Stokes hydrostatique avec conditions non homogènes. Les partie 2 et 3 sont consacrées à l'étude d'un modèle elliptique avec un coefficient de diffusion qui peut dégénérer. Ce type d'équations intervient également dans des problèmes géophysiques, que ce soit dans des questions de modélisation de circulation globale, mais aussi dans des problèmes d'infiltration et de milieux poreux. On étudie le cas du demi-espace pour lequel on obtient une théorie optimale de régularité des solutions faibles. On traite enfin le cas général pour lequel on obtient un cas d'existence et d'unicité de solution faible et un résultat de régularité associé.
|
4 |
Green's functions and integral equations for the Laplace and Helmholtz operators in impedance half-spacesHein Hoernig, Ricardo Oliver 19 May 2010 (has links) (PDF)
Dans cette thèse on calcule la fonction de Green des équations de Laplace et Helmholtz en deux et trois dimensions dans un demi-espace avec une condition à la limite d'impédance. Pour les calculs on utilise une transformée de Fourier partielle, le principe d'absorption limite, et quelques fonctions spéciales de la physique mathématique. La fonction de Green est après utilisée pour résoudre numériquement un problème de propagation des ondes dans un demi-espace qui est perturbé de manière compacte, avec impédance, en employant des techniques des équations intégrales et la méthode d'éléments de frontière. La connaissance de son champ lointain permet d'énoncer convenablement la condition de radiation dont on a besoin. Des expressions pour le champ proche et lointain de la solution sont données, dont l'existence et l'unicité sont discutées brièvement. Pour chaque cas un problème benchmark est résolu numériquement. On expose étendument le fond physique et mathématique et on inclut aussi la théorie des problèmes de propagation des ondes dans l'espace plein qui est perturbé de manière compacte, avec impédance. Les techniques mathématiques développées ici sont appliquées ensuite au calcul de résonances dans un port maritime. De la même façon, ils sont appliqués au calcul de la fonction de Green pour l'équation de Laplace dans un demi-plan bidimensionnel avec une condition à la limite de dérivée oblique.
|
5 |
Equation de Khokhlov-Zabolotskaya-Kuznetsov. Analyse Mathématique, Validation de l'approximation et Méthode de ContrôleRozanova-Pierrat, Anna 06 July 2006 (has links) (PDF)
Ce travail se compose de deux parties. Dans la première, nous considérons l'équation de Khokhlov-Zabolotskaya-Kuznetsov (KZK) $(u_t - u u_x -\beta u_{xx})_x -\gamma \Delta_y u =0$ dans les espaces de Sobolev des fonctions p\ériodiques sur $x$ de valeur moyenne nulle. La déivation de l'\équation KZK à partir des équations de Navier-Stokes isentropiques non linéaires et de l'approximation de leurs solutions (pour les cas visqueux et non visqueux), les résultats de l'existence, de l'unicité, de la stabilité et du blow-up de la solution de KZK sont obtenus ainsi qu'un résultat sur l'existence d'une solution régulière du syst\éme de Navier-Stokes dans le demi espace avec conditions aux limites péiodiques en temps et de valeur moyenne nulle. Dans la deuxième partie, nous prouvons la contrôabilitélocale des moments de deux systèmes décrits par une équation non-linéaire d'evolution dans un espace de Banach et par une équation non-linéaire de la chaleur quand le contrôle est un multiplicateur du membre de droite. Pour les deux systémes avec une surdétermination intégrale nous obtenons des conditions suffisantes sur la taille du voisinage duquel nous pouvons prendre la fonction de la condition de surdétermination de sorte que le problème inverse ait une solution unique. Nous prouvons également le résultat de contrôlabilité pour l'équation KZK linéarisée.
|
6 |
Identification électromagnétique de petites inclusions enfouiesGdoura, Souhir 29 September 2008 (has links) (PDF)
L'objet de la thèse est la détection électromagnétique non-itérative de petits objets enfouis. Le problème direct de diffraction est abordé en utilisant une formule asymptotique rigoureuse du champ diffracté par des inclusions dont la taille caractéristique est petite devant la longueur d'onde de leur illumination dans le milieu d'enfouissement. La prise en compte de la diffraction multiple dans le cas de deux inclusions sphériques est abordée grâce à un tenseur de polarisation spécifique qui est calculé dans un système approprié de coordonnées bisphériques. Le modèle de Foldy-Lax est aussi utilisé afin de prendre en compte le couplage entre plusieurs inclusions. Les simulations numériques montrent que cet effet de couplage ne peut être ressenti qu'en leurs voisinages immédiats. Une configuration d'enfouissement en demi-espace est aussi étudiée en détail. Les dyades de Green alors nécessaires sont calculées de manière exacte par "force brutale" numérique. Puis trois méthodes approchées de calcul des intégrales de Sommerfeld qui sont impliquées sont proposées, les simulations montrant qu'elles font gagner un temps de calcul significatif dans le calcul de ces dyades, tout en étant de précision convenable. La prise en compte du couplage entre une sphère et l'interface est aussi investiguée grâce à un tenseur de polarisation adéquat en coordonnées bisphériques (de facto, une des deux sphères dégénère en cette interface). A chaque fois, les champs diffractés simulés par la méthode asymptotique sont comparés à des champs obtenus par la méthode dite des dipôles couplés (CDM). Les résultats montrent que la méthode asymptotique fournit des valeurs du champ diffracté satisfaisantes tant que les tailles des inclusions restent assez petites devant la longueur d'onde. L'algorithme d'imagerie MUSIC est quant à lui utilisé pour détecter ces inclusions à partir de leur matrice de réponse multistatique (MSR) collectée via un réseau plan d'extension limitée de dipôles émetteurs-récepteurs idéaux. L'analyse des valeurs et des vecteurs singuliers de la matrice MSR montre qu'il existe une différence entre les données calculées par la méthode asymptotique et celles calculées par la méthode CDM. Mais cette différence ne persiste pas si l'on considère des données bruitées, même à relativement faible niveau de bruit. Dans les deux cas, MUSIC permet une estimation fiable de la position des inclusions, la notion de "super-localisation" étant en particulier discutée. Une méthode est par ailleurs proposée afin de détecter l'angle d'inclinaison d'un ellipsoïde incliné enfoui.
|
Page generated in 0.0469 seconds