Cette thèse s'inscrit dans le domaine des mathématiques appelé Optimisation de forme. Plus spécifiquement, on s'est attaché aux difficultés liées à l'écriture des conditions d'optimalité, et à leurs utilisations. Les deux obstacles majeurs qui ont été analysés sont les suivants :<br />- gérer des formes dont on ne connaît pas a priori la régularité,<br />- gérer des contraintes géométriques fortes, c'est-à-dire qui ne permettent que très peu de variations pour écrire l'optimalité (par exemple la convexité).<br /><br />Les résultats obtenus sont décrits dans les quatre chapitres de cette thèse :<br />- le premier vise à établir un cadre de différentiation de forme valable pour des formes presque sans régularité a priori,<br />- le chapitre 2 s'attache à l'analyse des conditions d'optimalité sous contrainte de convexité, en dimension 2, et leurs applications à une classe de problèmes où les formes optimales sont nécessairement des polygones,<br />- le troisième chapitre se focalise sur deux problèmes classiques de l'optimisation de forme des valeurs propres du laplacien, qui montrent bien les deux types de difficultés évoquées ci-dessus. On y démontre des résultats de régularité, et aussi de non-régularité, des formes optimales pour ces problèmes ; on obtient des limites de régularité en $\C^{1,1/2}$ qui sont nouvelles et optimales,<br />- le dernier chapitre est motivé par la question des problèmes elliptiques partiellement surdéterminés, et on construit des contre-exemples liés à l'optimisation de forme.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00346316 |
Date | 05 December 2008 |
Creators | Lamboley, Jimmy |
Publisher | École normale supérieure de Cachan - ENS Cachan |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0013 seconds