Cette thèse est consacrée à l'étude mathématique de quelques modèles d'équations aux dérivées partielles issues de la physique des plasmas. On s'intéresse principalement à l'analyse théorique de différents régimes asymptotiques de systèmes d'équations cinétiques de type Vlasov-Poisson-Fokker-Planck. Dans un premier temps, en présence d'un champ magnétique extérieur on se concentre sur l'approximation des électrons sans masse fournissant des modèles réduits lorsque le rapport me{mi entre la masse me d'un électron et la masse mi d'un ion tend vers 0 dans les modèles. Suivant le régime considéré, on montre qu'à la limite les solutions vérifient des modèles hydrodynamiques de type convection-diffusion ou sont données par des densités de type Maxwell-Boltzmann-Gibbs, suivant l'intensité des collisions dans la mise à l'échelle. En utilisant les propriétés hypocoercives et hypoelliptiques des équations, on est capable d'obtenir des taux de convergence en fonction du rapport de masse. Dans un second temps, par des méthodes similaires, on montre la convergence exponentielle en temps long vers l'équilibre des solutions du système de Vlasov-Poisson-Fokker-Planck sans champ magnétique avec des taux explicites en les paramètres du modèles. Enfin, on conçoit un nouveau type de schéma volumes finis pour des équations de convection-diffusion non-linéaires assurant le bon comportement en temps long des solutions discrètes. Ces propriétés sont vérifiées numériquement sur plusieurs modèles dont l'équation de Fokker-Planck avec champ magnétique / This thesis is devoted to the mathematical study of some models of partial differential equations from plasma physics. We are mainly interested in the theoretical study of various asymptotic regimes of Vlasov-Poisson-Fokker-Planck systems. First, in the presence of an external magnetic field, we focus on the approximation of massless electrons providing reduced models when the ratio me{mi between the mass me of an electron and the mass mi of an ion tends to 0 in the equations. Depending on the scaling, it is shown that, at the limit, solutions satisfy hydrodynamic models of convection-diffusion type or are given by Maxwell-Boltzmann-Gibbs densities depending on the intensity of collisions. Using hypocoercive and hypoelliptic properties of the equations, we are able to obtain convergence rates as a function of the mass ratio. In a second step, by similar methods, we show exponential convergence of solutions of the Vlasov-Poisson-Fokker-Planck system without magnetic field towards the steady state, with explicit rates depending on the parameters of the model. Finally, we design a new type of finite volume scheme for a class of nonlinear convection-diffusion equations ensuring the satisfying long-time behavior of discrete solutions. These properties are verified numerically on several models including the Fokker-Planck equation with magnetic field
Identifer | oai:union.ndltd.org:theses.fr/2017LYSE1165 |
Date | 20 September 2017 |
Creators | Herda, Maxime |
Contributors | Lyon, Filbet, Francis |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds