L’hypertension artérielle pulmonaire (PAH) est une condition clinique rare caractérisée par une augmentation progressive de la résistance vasculaire pulmonaire menant à une défaillance cardiaque droite. Sur le plan histologique, plusieurs processus coexistent au sein des artères pulmonaires, notamment de l’inflammation, une vasoconstriction et un remodelage vasculaire. Ce dernier est principalement la conséquence d’une prolifération incontrôlée des cellules musculaires lisses (PASMC) résidentes et d’une résistance à l’apoptose de celles-ci. À ce titre, la PAH présente de fortes similitudes avec le cancer. En dépit d’une augmentation des connaissances des mécanismes physiopathologiques et des progrès dans la prise en charge des patients, cette maladie demeure toujours incurable avec un taux de survie de 60% à 5 ans. Il est donc nécessaire de trouver de nouvelles avenues thérapeutiques pour ces patients. Plusieurs stress environnementaux sont présents dans la PAH, notamment l'inflammation, le stress de cisaillement et la pseudo-hypoxie. Malgré ces conditions favorisant les dommages à l’ADN, les cellules vasculaires sont prolifératives et résistantes à l’apoptose. Par des études translationnelles basées sur des tissus humains, nous avons mis en évidence le rôle du dommage à l’ADN et des mécanismes épigénétiques dans la physiopathologie de la PAH. De par ses similitudes avec le cancer, nous nous sommes d’abord intéressés à la poly(ADPribose) polymérase 1 (PARP-1), une enzyme clé dans les processus de réparation de l’ADN et dans le contrôle de la survie cellulaire. Dans le chapitre 2, nous montrons que les poumons, les artères pulmonaires et les PASMC isolées de patients atteints de PAH présentent davantage de dommages à l’ADN et une surexpression de PARP-1. De manière intéressante, nous avons montré que PARP-1 pouvait réguler des facteurs de transcription impliqués dans la pathogénèse de la PAH tels que HIF-1α (Hypoxia-inducible factor 1- alpha) et NFAT (Nuclear factor of activated T-cells). La surexpression de PARP-1 entraînait également la diminution d’expression du microARN miR-204, un autre acteur clé de la maladie. L’effet thérapeutique des inhibiteurs de PARP-1 a été évalué dans deux modèles animaux de la PAH. L’administration de ces inhibiteurs a diminué le remodelage vasculaire pulmonaire et amélioré les paramètres hémodynamiques. De plus, l’inhibiteur pharmacologique de PARP-1 était plus efficace que les traitements de première ligne offerts aux patients atteints de PAH. Dans le chapitre 3, nous avons étudié les mécanismes par lesquels PARP-1 était surexprimé dans la PAH. En se basant sur des études dans le cancer et sur des prédictions bio-informatiques, nous nous sommes intéressé au microARN miR-223. Nous avons démontré que miR-223 est diminué au niveau vasculaire pulmonaire et dans les PASMC isolées de patients atteints de PAH. Par une approche bidirectionnelle, nous avons mis en évidence qu’une augmentation de HIF-1α diminue l’expression de miR-223 et que la diminution de miR-223 entraîne une augmentation de PARP-1, ce qui favorise la réparation des dommages à l’ADN. Nous avons montré que la diminution de miR-223 était également associée à une augmentation de la prolifération des PASMC et de la résistance à l’apoptose de celles-ci. Dans un modèle animal de la maladie, nous avons montré que l’augmentation ectopique de miR-223, à l’aide de mimic, permettait d’améliorer les paramètres hémodynamiques pulmonaires et cardiaques. Dans le chapitre 4, nous avons étudié un mécanisme épigénétique en aval de PARP-1 et miR-204. Nous avons montré que le lecteur épigénétique BRD4 (Bromodomain-containing protein 4) était surexprimé dans les tissus pulmonaires de patients atteints de PAH. Les lecteurs épigénétiques se lient aux queues acétylées des histones afin de favoriser la transcription de différents gènes. Dans la PAH, nous avons mis en évidence que BRD4 régule l’expression d’oncogènes impliqués dans la physiopathologie de la maladie, tels que p21, NFAT, Bcl-2 et Survivin. BRD4 régule également le métabolisme mitochondrial des PASMC. Nous avons montré que l’inhibition de BRD4 permettait de diminuer la prolifération, d’augmenter l’apoptose et de restaurer l’activité mitochondriale des PASMC. L’utilisation d’inhibiteurs de BRD4 dans un modèle de rat atteints de PAH a permis de mettre en évidence le potentiel thérapeutique de l’inhibition de ce lecteur épigénétique dans la PAH. En conclusion, ces études ont permis de mettre en lumière de nouvelles voies de signalisation impliquées dans la physiopathologie de la PAH et d’ouvrir la porte à de nouvelles avenues thérapeutiques dans le traitement de cette maladie toujours incurable. / Pulmonary arterial hypertension (PAH) is a rare clinical condition characterized by a progressive increase in pulmonary vascular resistance leading to right heart failure and death. Histologically, several processes coexist within the pulmonary arteries, including inflammation, vasoconstriction and vascular remodeling. Remodeling of the pulmonary vessel is due to abnormal and uncontrolled growth of resident pulmonary artery smooth muscle cells (PASMC). As such, PAH exhibits some cancer-like characteristics. In spite of recent progress in understanding the pathophysiological mechanisms involved in disease development and progression, as well as major improvements in symptomatic treatments, no substantial modification in the fatal course of this disease has been achieved. The mean survival rate is about 60% 5 years after diagnosis. Therefore, the identification of new targets has become mandatory. PAH is associated with sustained inflammation, oxidative stress, shear stress and pseudo-hypoxia, all known to promote DNA damage. Despite these unfavorable environmental conditions, PAH PASMC exhibit increased proliferation and resistance to apoptosis. Using a translational approach, we highlighted the role for DNA damage signaling and epigenetic mechanisms in the pathophysiology of PAH. Since PAH shares many hallmarks with cancer, we first studied Poly(ADP-ribose) polymerase-1 (PARP-1), a key enzyme in DNA repair mechanisms and in cell survival in the pathophysiology of PAH. In Chapter 2, we demonstrate that PAH is associated with sustained DNA damage leading to PARP-1 activation. Interestingly, we showed that PARP-1 overexpression triggers the expression and activation of transcription factors known to be implicated in PAH progression, such as HIF-1α (Hypoxia-inducible factor 1-alpha) and NFAT (Nuclear factor of activated T-cells). Overexpression of PARP-1 alsoresulted in decreased expression of microRNA miR-204, another key player in the disease. In animal studies, administration of a clinically available PARP-1 inhibitor decreased PAH in two experimental rat models. In addition, PARP-1 inhibitor was more effective than the first-line treatments offered to patients with PAH. In Chapter 3, we investigated the mechanisms by which PARP-1 was overexpressed in PAH. In silico analyses and studies in cancer demonstrated that miR-223 downregulation triggers PARP-1 overexpression. We provided evidence that miR-223 is downregulated in human PAH lungs, distal pulmonary arteries, and isolated PASMC. Furthermore, using a gain and loss of function approach, we showed that increased HIF-1α (hypoxia-inducible factor 1α), which is observed in PAH, triggers this decrease in miR-223 expression and subsequent overexpression of PARP-1 allowing PAH-PASMC proliferation and resistance to apoptosis. We also demonstrated that restoring the expression of miR-223, by using a mimic, allowed to improve pulmonary and cardiac hemodynamic parameters. In Chapter 4, we investigated epigenetic mechanisms downstream of PARP-1 and miR- 204. Interestingly, the epigenetic reader BRD4 (Bromodomain-containing protein 4) is a predicted target of miR-204 and has binding sites on NFAT’s promoter region. In our study, we showed that BRD4 is upregulated in lungs, distal pulmonary arteries and PASMC of PAH patients. Epigenetic readers bind to acetylated histone tails to promote gene transcription. In PAH, we demonstrated that BRD4 increases the expression of oncogenes involved in PAH pathogenesis, such as NFAT, Bcl-2, p21 and Survivin. BRD4 also regulates mitochondrial metabolism of PASMC. Blocking this oncogenic signature led to decreased proliferation and increased apoptosis of PAH-PASMC in a BRD4-dependant manner. In addition, pharmacological or molecular inhibition of BRD4 reversed established PAH in a rat model of the disease. In conclusion, these studies showed a key role for DNA damage signaling and epigenetic mechanisms in PAH pathophysiology. Our studies also offer new therapeutic perspectives for patients with PAH.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/31446 |
Date | 27 September 2018 |
Creators | Meloche, Jolyane |
Contributors | Provencher, Steeve, Bonnet, Sébastien |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne ( xxiii, 435 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0031 seconds