Dans ce travail de thèse, nous nous intéressons à l'étude mathématique du transport dans les systèmes de Hall quantiques en milieu désordonné. Plus précisément nous commençons par étudier la théorie de la réponse linéaire dans le cas continu pour un opérateur de Schrödinger magnétique aléatoire. Nous exploitons le formalisme de l'intégration non commutative pour développer une théorie de la réponse linéaire adaptée au problème et obtenir une formule de Kubo-Středa. Dans un deuxième temps nous nous intéressons à la quantification des courants de bord créés par un mur magnétique modélisé par un Hamiltonien d'Iwatsuka. Nous démontrons la stabilité de cette quantification sous certaines perturbations magnétiques. Enfin nous achevons ce travail de thèse par une discussion plus approfondie sur le formalisme développé dans la première partie, de manière à permettre une généralisation future de la théorie de la réponse linéaire.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00578272 |
Date | 02 April 2009 |
Creators | Dombrowski, Nicolas |
Publisher | Université de Cergy Pontoise |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds