Return to search

Analyzing Radial Basis Function Neural Networks for predicting anomalies in Intrusion Detection Systems / Utvärdera prestanda av radiella basfunktionsnätverk för intrångsdetekteringssystem

In the 21st century, information is the new currency. With the omnipresence of devices connected to the internet, humanity can instantly avail any information. However, there are certain are cybercrime groups which steal the information. An Intrusion Detection System (IDS) monitors a network for suspicious activities and alerts its owner about an undesired intrusion. These commercial IDS’es react after detecting intrusion attempts. With the cyber attacks becoming increasingly complex, it is expensive to wait for the attacks to happen and respond later. It is crucial for network owners to employ IDS’es that preemptively differentiate a harmless data request from a malicious one. Machine Learning (ML) can solve this problem by recognizing patterns in internet traffic to predict the behaviour of network users. This project studies how effectively Radial Basis Function Neural Network (RBFN) with Deep Learning Architecture can impact intrusion detection. On the basis of the existing framework, it asks how well can an RBFN predict malicious intrusive attempts, especially when compared to contemporary detection practices.Here, an RBFN is a multi-layered neural network model that uses a radial basis function to transform input traffic data. Once transformed, it is possible to separate the various traffic data points using a single straight line in extradimensional space. The outcome of the project indicates that the proposed method is severely affected by limitations. E.g. the model needs to be fine tuned over several trials to achieve a desired accuracy. The results of the implementation show that RBFN is accurate at predicting various cyber attacks such as web attacks, infiltrations, brute force, SSH etc, and normal internet behaviour on an average 80% of the time. Other algorithms in identical testbed are more than 90% accurate. Despite the lower accuracy, RBFN model is more than 94% accurate at recording specific kinds of attacks such as Port Scans and BotNet malware. One possible solution is to restrict this model to predict only malware attacks and use different machine learning algorithm for other attacks. / I det 21: a århundradet är information den nya valutan. Med allnärvaro av enheter anslutna till internet har mänskligheten tillgång till information inom ett ögonblick. Det finns dock vissa grupper som använder metoder för att stjäla information för personlig vinst via internet. Ett intrångsdetekteringssystem (IDS) övervakar ett nätverk för misstänkta aktiviteter och varnar dess ägare om ett oönskat intrång skett. Kommersiella IDS reagerar efter detekteringen av ett intrångsförsök. Angreppen blir alltmer komplexa och det kan vara dyrt att vänta på att attackerna ska ske för att reagera senare. Det är avgörande för nätverksägare att använda IDS:er som på ett förebyggande sätt kan skilja på oskadlig dataanvändning från skadlig. Maskininlärning kan lösa detta problem. Den kan analysera all befintliga data om internettrafik, känna igen mönster och förutse användarnas beteende. Detta projekt syftar till att studera hur effektivt Radial Basis Function Neural Networks (RBFN) med Djupinlärnings arkitektur kan påverka intrångsdetektering. Från detta perspektiv ställs frågan hur väl en RBFN kan förutsäga skadliga intrångsförsök, särskilt i jämförelse med befintliga detektionsmetoder.Här är RBFN definierad som en flera-lagers neuralt nätverksmodell som använder en radiell grundfunktion för att omvandla data till linjärt separerbar. Efter en undersökning av modern litteratur och lokalisering av ett namngivet dataset användes kvantitativ forskningsmetodik med prestanda indikatorer för att utvärdera RBFN: s prestanda. En Random Forest Classifier algorithm användes också för jämförelse. Resultaten erhölls efter en serie finjusteringar av parametrar på modellerna. Resultaten visar att RBFN är korrekt när den förutsäger avvikande internetbeteende i genomsnitt 80% av tiden. Andra algoritmer i litteraturen beskrivs som mer än 90% korrekta. Den föreslagna RBFN-modellen är emellertid mycket exakt när man registrerar specifika typer av attacker som Port Scans och BotNet malware. Resultatet av projektet visar att den föreslagna metoden är allvarligt påverkad av begränsningar. T.ex. så behöver modellen finjusteras över flera försök för att uppnå önskad noggrannhet. En möjlig lösning är att begränsa denna modell till att endast förutsäga malware-attacker och använda andra maskininlärnings-algoritmer för andra attacker.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-259187
Date January 2019
CreatorsKamat, Sai Shyamsunder
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2019:258

Page generated in 0.0109 seconds