Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2016. / Submitted by Fernanda Percia França (fernandafranca@bce.unb.br) on 2017-01-31T19:18:53Z
No. of bitstreams: 1
2016_IlanaZuilaMonteiroAlves.pdf: 1504757 bytes, checksum: 74f9b76f5b924214935e8089f8d39f28 (MD5) / Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2017-02-10T21:41:58Z (GMT) No. of bitstreams: 1
2016_IlanaZuilaMonteiroAlves.pdf: 1504757 bytes, checksum: 74f9b76f5b924214935e8089f8d39f28 (MD5) / Made available in DSpace on 2017-02-10T21:41:58Z (GMT). No. of bitstreams: 1
2016_IlanaZuilaMonteiroAlves.pdf: 1504757 bytes, checksum: 74f9b76f5b924214935e8089f8d39f28 (MD5) / Seja L uma álgebra de Lie sobre um corpo de característica p>0. Estudamos a estrutura de álgebra de Lie da álgebra de Poisson simétrica truncada s(L). Isto é, determinamos as condições necessárias e suficientes para L com respeito as quais s(L) é Lie nilpotente, Lie nilpotente forte, csoolnúdvieçlõ ees seosltúavbeel lefocridtea,s ,o nedspee cpirfeiccaismaomso sa cpl>a2s spea drae eLsietu ndialpr oatê nscoialu bfoilirdtea ddee. sC(oLm). Arelésmpe idtois saos, provamos que a classe de Lie nilpotência coincide com a classe de Lie nilpotência forte no caso p>3. Em nossa abordagem, usamos uma teoria bem estabelecida de delta-conjuntos para álgebras de Lie e teoria de relações idênticas para álgebras de Poisson. Também estudamos filtrações em álgebras de Poisson e provamos resultados sobre os produtos dos termos das séries centrais inferiores para álgebras de Poisson. Shestakov provou que a álgebra simétrica s(L) de uma álgebra de Lie arbitrária L, satisfaz a identidade de Poisson {x,{y,z}}≡ 0 se, e somente se, L é abeliana. Estendemos este resultado para Lie nilpotência e Lie solubilidade de S(L). / Let L be a Lie algebra over a field of characteristic p>0. We study the Lie algebra structure of the truncated symmetric Poisson algebra s(L). Namely, we determine the necessary and sufficient conditions for L under which s(L)is Lie nilpotent, Lie strongly nilpotent, solvable and strongly tshoelv satbrolen,g w Lhiee rnei lpwoet enneceyd c lpa>s2s otof ss(tLu)d. yM tohree osvoelvra, bwielit yp.r oUvned tehra et sthtaeb Lliiseh neidlp ocotenndcityio cnlass, sw ceo isnpceidceifsy with the strong Lie nilpotency class in case p>3. In our approach, we use a well-established theory of delta-sets for Lie algebras and theory of identical relations of Poisson algebras. Also, we study filtrations in Poisson algebras and prove results on products of the terms of the lower central series for Poisson algebras. Shestakov proved that the symmetric algebra S(L) of an arbitrary Lie algebra L satisfies the Poisson identity {x,{y,z}}≡0 if, and only if, L is abelian. We extend this result for Lie nilpotency and Lie solvability of S(L).
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unb.br:10482/22475 |
Date | 07 December 2016 |
Creators | Alves, Ilana Zuila Monteiro |
Contributors | Petrogradskiy, Victor |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Repositório Institucional da UnB, instname:Universidade de Brasília, instacron:UNB |
Rights | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data., info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds