Return to search

Caractérisation optique et microphysique des aérosols atmosphériques en zone urbaine ouest africaine : application aux calculs du forçage radiatif à Ouagadougou / Optical and microphysical characterization of atmospheric aerosols in west african urban site : Application to the calculation of radiative forcing over Ouagadougou

Dans cette thèse, nous analysons les principales caractéristiques des aérosols atmosphériques sur un site urbain en Afrique de l’Ouest : la ville de Ouagadougou. Cette analyse est suivie de l’évaluation du forçage radiatif produit par cette population d’aérosols au sommet de l’atmosphère, dans la couche atmosphérique ainsi qu’à la surface terrestre. Une étude climatologique des propriétés optiques (épaisseurs optiques, exposant d’Angström, albédo de simple diffusion, facteur d’asymétrie) et microphysiques (distribution granulométrique, indice complexe de réfraction) a été effectuée sur la base des données de mesures et d’inversions photométriques du réseau AERONET. L’analyse de ces données a permis de définir à diverses échelles de temps les différentes variabilités des propriétés étudiées. Ces propriétés ont mis en exergue les effets combinés de l’activité anthropique, du cycle de production des poussières minérales d’origine saharienne, de la succession saisonnière et la dynamique du climat spécifiques à cette région de la terre. La composition du panache d’aérosols a également été déduite de l’analyse des données optiques, et les conclusions tirées se sont avérées être en bon accord avec des mesures chimiques effectuées au LSCE sur des échantillons obtenus par prélèvement manuel sur filtres. Le bilan radiatif a été évalué en utilisant le modèle GAME. Cette simulation a montré une forte corrélation du forçage avec la succession des saisons sèche et humide, avec des valeurs extrêmes au mois d’Août (humide) et de Mars (sec avec poussières maximales). Les résultats traduisent un refroidissement en surface pouvant atteindre -41 W/m 2 en Mars, un réchauffement de la couche atmosphérique qui va de 15 à 35 W/m 2 environ et un refroidissement au sommet de l’atmosphère compris entre -2 et -6 W/m 2 . La représentation du forçage calculé en fonction de l’albédo de simple diffusion a montré une tendance linéaire avec un coefficient de corrélation traduisant une fiabilité de nos résultats de l’ordre de 88%. La cohérence des valeurs simulées a été aussi montrée par une comparaison avec des résultats obtenus dans la région Ouest Africaine par d’autres chercheurs utilisant des techniques différentes. De même, la représentation de l’efficacité radiative simulée en fonction de celle inversée par AERONET a montré un très bon accord. / In this thesis, we analyze the main characteristics of atmospheric aerosols on an urban site in West Africa: Ouagadougou. This analysis is followed by an assessment of the radiative forcing produced by this population of aerosols at the top of the atmosphere, in the atmospheric layer and at the Earth's surface. A climatological study of the optical properties (optical thickness, Angstrom exponent, single scattering albedo, asymmetry factor) and microphysical properties (particle size distribution, complex refractive index) was performed on basis of data obtained from photometric measurement and inversions of AERONET network. The analysis of these data allowed us to define the different variabilities of the properties studied at various time scales. These properties have highlighted the combined effects of human activity, the cycle production of mineral dust from the Sahara region, the seasonal succession and the climate dynamics known in this region of the earth. The composition of the aerosol plume was also deduced from the analysis of optical data, and the conclusions were found to be in good agreement with chemical analysis carried out at LSCE on samples obtained by sampling on filters at Ouagadougou. The radiation balance was assessed using the GAME model. This simulation showed a strong relationship of the radiative forcing with the succesion of wet and dry seasons, with extreme values in August (wet) and Mars (dry with maximum dust emissions). The results showed a cooling at the surface that can reach -41 W / m 2 in March, a warming of the atmosphere, ranging from 15 to 35 W / m 2 about and a cooling at the top of the atmosphere between -2 and -6 W / m 2 . The representation of the radiative forcing calculated as a function of the single scattering albedo showed a linear trend with a correlation coefficient reflecting relatively good reliability of our results (about 88%). The consistency of simulated values was also shown by a comparison with the results obtained in the West African region by other researchers using different techniques. Similarly, the representation of the radiative efficiency simulated as a function of the inverted AERONET one showed a very good agreement.

Identiferoai:union.ndltd.org:theses.fr/2014CLF22509
Date15 November 2014
CreatorsKorgo, Bruno
ContributorsClermont-Ferrand 2, Université de Ouagadougou, Roger, Jean-Claude, Bathiebo, Dieudonné Joseph
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0025 seconds