Return to search

Méthodes d'éléments finis d'ordre élevé pour la simulation numérique de la propagation d'ondes

Le but de cette thèse est la construction de schémas numériques pour la simulation de phénomènes de propagation d'ondes acoustiques et électromagnétiques basés sur des discrétisations en espace par éléments finis conformes, ces schémas ayant pour vocation à être d'ordre arbitrairement élevé et aussi efficaces que possible. Dans le cadre de l'équation des ondes scalaire nous reprenons le problème de la condensation de la matrice de masse issue des éléments finis de Lagrange (cf. Cohen-Joly-Tordjmann) pour en décrire un algorithme de construction général. Cet algorithme nous a permis de déterminer un nouvel élément fini avec condensation de masse de type $P_6$. Nous présentons aussi une nouvelle approche permettant une condensation partielle de la matrice de masse. Dans le cadre de la propagation d'ondes électromagnétiques modélisée par les équations de Maxwell, nous présentons une méthode de couplage conforme d'éléments finis d'arête rectangulaires (avec condensation de la matrice de masse) et triangulaires, permettant d'optimiser le profil de la matrice de masse (et donc d'en optimiser l'inversion) pour les simulations dans des domaines à géométrie complexe. Nous présentons aussi une discrétisation en temps d'ordre arbitrairement élevé, basée sur une procédure de type Cauchy-Kowalewski, que l'on a stabilisée. Toutes les discrétisations présentées ont été implémentées, testées de manière exhaustive et leur efficacité a été comparée, dans une série de tests numériques, à celle des discrétisations couramment utilisées pour ce type d'applications telles que les discrétisations en espace par éléments finis de Lagrange standards, et les discrétisations symplectiques ou de Runge-Kutta en temps

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00188739
Date28 November 2007
CreatorsJund, Sébastien
PublisherUniversité Louis Pasteur - Strasbourg I
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds