La thèse est consacrée essentiellement à l'étude de systèmes non linéaires d'évolution issus d'un modèle de Boussinesq : couplage entre les équations de Navier-stokes avec un second membre F(µ), où F est une force de gravité proportionnelle à des variations de densité qui dépendent de la température et l'équation de l'énergie.<br />Le premier chapitre nous donne un résultat d'existence d'une solution faible-renormalisée du système de Boussinesq en dimension 2, dans le cas où F est bornée.<br />Dans le chapitre 2, on aborde le cas de fonctions F plus générales : F vérifie une hypothèse de croissance. On démontre l'existence de solutions pour toutes données initiales ou pour des données initiales petites selon la croissance de F.<br />Dans le chapitre 3, nous faisons une généralisation des résultats du chapitre 2 mais sans le terme de convection.<br />Dans le chapitre 4, le manque de stabilité de l'énergie de dissipation dans L1(Q) en dimension 3, nous contraint à transformer de façon formelle le système de Boussinesq. On démontre l'existence d'une solution faible de ce nouveau système en dimension 3.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00259252 |
Date | 06 April 2007 |
Creators | Attaoui, Abdelatif |
Publisher | Université de Rouen |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds