Return to search

Modélisation mathématique et numérique du poumon humain

Nous proposons un modèle mathématique intégré du poumon dont l'approche globale repose sur une modélisation multibloc. En effet, on décompose en trois niveaux l'arbre bronchique qui s'étend sur vingt quatre générations de bronches allant de la trachée aux alvéoles. Au premier niveau (les six premières générations), a lieu un écoulement de Navier-Stokes, qui est simulé directement. Au deuxième niveau (de la génération sept à la génération dix sept), les flux à travers les bronches sont régis par la loi de Poiseuille. La linéarité de cette loi nous permet de condenser cette partie de l'arbre et de proposer des conditions aux bords dissipatives adaptées à la similation de la ventilation et permettant d'éviter le maillage de cette partie géométriquement complexe. Le dernier niveau du modèle, prend en compte la partie distale de l'arbre qui est la zone alvéolaire. Elle est composée des acini, qui agissent comme un ensemble de petites pompes et dont l'effet macroscopique est le moteur même de la respiration. A ce niveau, on propose les déplacements d'un piston comme modèle simplifié des mouvements du diaphragme pulmonaire. Dans un premier temps, on se place dans le cadre particulier des équations de Stokes et on s'intéresse au couplage des deux premiers compartiments, dont la validité est illustrée par des tests numériques. On explique également le calcul de la résistance globale équivalente qui intervient dans le calcul de la condition aux limites qui remplace la zone condensée. L'étude est ensuite généralisée au cas des équations de Navier-Stokes. La difficulté réside dans le contrôle du flux d'énergie cinétique, on introduit alors une classe de conditions aux limites, qu'on désigne par dissipatives essentielles, pour lesquelles la trace du champ de vitesse sur les sections d'entrée et de sorties vit dans un espace de dimension fini, et pour lesquelles on prouve des résultats d'existence de solutions faibles locales en temps pour données quelconques et globales en temps pour données petites. Pour le cas de conditions dites dissipatives naturelles, c'est à dire sans contrainte sur la trace du champ de vitesse, on a existence de solutions faibles locales en temps pour données petites et globales en temps pour données plus petites, mais seulement en dimension deux. Cependant, on prouve pour ces conditions aux limites, que pour une classe de solutions plus régulières on a l'existence d'une unique solution locale en temps ainsi que l'existence d'une solution globale en temps pour données petites. Pour le couplage global, incluant le piston, on prouve l'existence de solutions faibles locales en temps pour des données quelconques en ce qui concerne les conditions aux limites dissipatives essentielles, tandis que pour les conditions dissipatives naturelles, on obtient l'existence de solutions locales en temps pour données petites et toujours seulement en dimension deux. Finalement, on propose une discrétisation en temps du problème global et on établit un bilan énergétique à l'ordre 1 pour le problème régulier en espace et discrétisé en temps. Nous présentons ainsi plusieurs simulations numériques bi-dimensionnelles correspondants aussi bien à un poumon sain que pathologique et notamment asthmatique.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00207495
Date06 December 2007
CreatorsSoualah Alila, Assia
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds