En ingénierie sismique, il est admis que le comportement d’une structure soumise à de forts séismes soit caractérisé par des boucles d’hystérésis qui peuvent être amples ou étroites selon le type de structure impactée. La prise en compte de ce type de comportement non-linéaire dans un calcul temporel présente des difficultés liées à l’identification des paramètres, au coût numérique élevé, au risque de non-convergence. Dans ce contexte, la méthode de linéarisation équivalente, a été introduite en géotechnique dès les années 70. Elle reste peu utilisée dans le domaine des structures malgré les efforts de nombreux auteurs. Ce travail de thèse a pour objet l’étude du comportement linéaire équivalent dans le contexte des méthodes simplifiées d'évaluation de la réponse non-linéaire d'une structure en ingénierie sismique. Nous passons en revue les critères de linéarisation adoptés par les différentes méthodes qui recherchent l’équivalence (1) du déplacement maximum ou (2) de la quantité d’énergie dissipée ou (3) de la force de rappel. Nos analyses montrent que ces trois critères ne sont pas pertinents et/ou efficaces, conduisant à des méthodes peu robustes qui conduisent dans certains cas à des résultats inexplicables. Nous montrons le rôle important, négligé par toutes les méthodes disponibles, du contenu fréquentiel respectif des signaux et du système dans la détermination de la ductilité appelée. Sur cette constatation, nous introduisons une nouvelle méthode de linéarisation équivalente basée sur la fonction de transfert. Nous utilisons cette méthode pour explorer un plan d’expérience numérique dans lequel nous calculons les caractéristiques de fréquence et d’amortissement équivalents en fonction de la ductilité appelée pour différente configurations caractérisées par (a) le rapport entre fréquence de l’oscillateur et fréquence centrale du signal excitateur, (b) la pente d’écrouissage et (c) le modèle de comportement qui varie continument de élastoplastique à endommageant. Nous proposons deux nouvelles approches du comportement linéaire équivalent. La première, visant à améliorer la procédure statique non-linéaire de l’ATC40, utilise la rigidité sécante et le déplacement maximal. Elle fait intervenir une estimation de l’amortissement différente de celle de l’ATC40. Sa pertinence est établie par le fait qu’elle permet d’évaluer avec exactitude le déplacement maximal de systèmes canoniques non-linéaires. La seconde consiste à restituer la dynamique de la réponse d'un oscillateur non-linéaire au travers de la fonction de transfert. Sa pertinence est démontrée au travers des critères d’Anderson, avec notamment un critère relatif au spectre transféré. La détermination du comportement linéaire équivalent par fonction de transfert est validée sur des structures réelles au travers des essais sur voiles en béton armé (SAFE) et sur systèmes des tuyauteries (BARC et EPRI) / In earthquake engineering, it is common that the behaviour of a structure undergoing a strong motion is characterized by wise or narrow hysteresis loops depending on the type of behaviour of the structure. Considering this non-linear behaviour in a transient calculation requires a huge need of resources in terms of calculation time and memory. In this context, the method of equivalent linearization, consisting in the evaluation of the non-linear response of the structure has been introduced by geotechnical engineers In the 1970s. Despite efforts of many authors, this method is still not used in structural field. The goal of this research is to examine the linear equivalent behaviour in the context of the simplified method of evaluating the non-linear response of a structure in earthquake engineering. We review the criteria of equivalence adopted by many methods searching for the equivalence of (1) the maximum of displacement or (2) quantity of dissipated energy or (3) the restore force. Our argumentative analyses carry out that these three criteria are not pertinent and/or efficient. This leads, in some cases, to some unexplained results. We show the important role, which is mostly neglected in existing method, of frequency content while evaluating the ductile demand. Based on this recognition, we introduce a new method of equivalent linearization based on the transfer function. We use this method in order to explore a numerical experimental plan in which we calculate the equivalent characteristics (frequency and damping) versus the ductile demand for different configuration characterized by (a) the ratio between the frequency of the oscillator and the central frequency of the input signal, (b) the hardening and (c) the behaviour which covers the elastoplastic and damaged ones. We propose two new approaches of the linear equivalent behaviour. The first one, aiming to improve the non-linear static procedure of ATC40, use the secant stiffness and the maximal displacement. This approach consists in an estimation of damping which is different to ATC40. Its pertinence is established by evaluating with accuracy the maximal displacement of the canonical non-linear systems. The second approach consists in restitution of the dynamic of the response of a non-linear oscillator by using the transfer function. The pertinence of this proposition is shown through the criteria of Anderson, especially in terms of transferred motion. In this effect, the linear equivalent behaviour based on the transfer function allows to cope the transferred motion through the non-linear oscillator without performing the non-linear transient calculation. The validation of the linear equivalent behaviour based on the transfer function has been examined on real structures through some experimental tests such as the reinforced concrete wall (SAFE) or piping systems (BARC and EPRI)
Identifer | oai:union.ndltd.org:theses.fr/2017PESC1032 |
Date | 20 December 2017 |
Creators | Nguyen, Thuong Anh |
Contributors | Paris Est, Semblat, Jean-François |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds