Return to search

Determination of water effective diffusivity within CNT/PMMA nanocomposite membranes from kinetic Monte Carlo simulations

Membranes find extensive applications today in numerous processes ranging from gas purification techniques to the treatment of industrial wastewater and the production of clean water because of their potential for better energy utilization and reduced production and equipment costs. A typical example is seawater desalination, where the use of advanced membrane technologies based on nanoporous, semipermeable materials with well controlled pore architectures would be favored over reverse osmosis due to lower operating cost and minimal environmental impact. But for membranes to achieve the desired levels of purification efficiency and effectiveness (they are also often susceptible to fouling and tend to exhibit low chemical resistance) they must possess an array of desired and novel properties such as high tensile strength and a well-defined nanoscale porous structure; the latter could allow the selective transport of (e.g.) water while simultaneously blocking undesired compounds (e.g., organic molecules). A typical such membrane operation is nanofiltration (NF), driven by applying a pressure difference between the two sides of the membrane.
In the last decade, a large number of experimental studies have identified carbon nanotubes (CNTs) as a very attractive new class of nanoporous materials for designing nanostructured polymeric membranes characterized by exceptionally selective and permeable nanopores. Unfortunately, contradicting experimental results have often been reported as far as the magnitude of flow enhancement is concerned during water transport through nanometer-wide CNTs embedded in micrometer thick membranes. For example, Holt et al. [Nano Letters, 2004] reported an enhancement factor of 4 to 5 orders of magnitude higher while Majumder et al. [Nature, 2005] found water flows that are 2 to 4 orders of magnitude larger than the predicted ones by macroscopic continuum models. More recent experimental results [Qin et al., Nano Letters, 2011] on individual ultra-long (several micrometers) CNTs with diameter in the range 0.81-1.59 nm reported flow enhancement rates below 1000, thus contradicting for the same diameter the results of the two previous studies. A thorough review of the existing literature [Kannam et al., JCP, 2013] has shown that data for the slip length (which characterizes the flow rate of water in CNTs) are scattered over 5 orders of magnitude for nanotubes of diameter 0.81–10 nm.
To help clarify some of the above observations, in this Master’s thesis, we have developed and implemented a coarse-grained method for simulating diffusion of a small molecule (water) within a glassy PMMA membrane containing CNTs which has allowed us to probe significantly longer times than what is possible today by atomistic molecular dynamics (MD) simulations. The method is known as kinetic Monte Carlo, is realized on a lattice, and uses as input data only the transition rates for a water molecule to hop from one lattice site to another. To take into account the nanostructure of the polymeric membrane and the fact that water diffuses much faster within a CNT than within a glassy polymer, lattice sites belonging to PMMA regions of the membrane have been assigned a different rate constant than lattice sites belonging to the interior of a CNT. The two constants have been computed by borrowing data for water diffusivity in the PMMA matrix and in a CNT either from experimental measurements or from independent simulation studies. At T=300K and for CNTs with a diameter D larger than about 2 nm, the rates are equal to 1.3x108 s-1 for PMMA and 2.3x1011 s-1 for CNT. That is, CNT sites correspond to “fast-diffusing” regions while PMMA ones to “slow-diffusing” regions, for a given water molecule.
The simulations begin by distributing a large number of ghost water molecules on the sites of the lattice and letting them hop from site to site by using the above predetermined transition rates. In the simulations, hopping from a PMMA site towards a CNT interior site and backwards is forbidden; the only possible way for a walker to enter-exit a CNT is via the CNT entrance region. From the KMC method we compute the mean square displacement (msd) of all walkers as a function of time and then we apply Einstein’s equation to extract the corresponding effective diffusivity Deff quantifying water transport in the entire polymeric membrane given that the diffusive motion of the penetrants is Fickian. We conducted several such KMC runs both for randomly placed and perfectly aligned CNTs in the matrix, and we calculated the dependence of Deff on the size of CNTs (their diameter D and length L) and their concentration C (% vol.) in the PMMA matrix. Our simulation results indicate that CNT orientation does not significantly affect the water effective diffusivity. We also found that Deff varies practically linearly with both the CNT aspect ratio and CNT concentration. This allowed us to come up with a simple linear expression for Deff as a function of C and L/D describing the mobility of water molecules in the membrane. The predictions of this analytical equation are in excellent agreement with the simulation findings. / Για την αποτελεσματική επεξεργασία βιομηχανικών λυμάτων συχνά χρησιμοποιούνται μεμβράνες. Με αυτόν τον τρόπο γίνεται η προσπάθεια απομάκρυνσης τοξικών καθώς και διαφόρων άλλων οργανικών λυμάτων. Οι συμβατικές πλαστικές μεμβράνες παρουσιάζουν χαμηλή διαπερατότητα στα μόρια του νερού με αποτέλεσμα, οι ρυθμοί καθαρισμού των λυμάτων να είναι πολύ χαμηλοί. Στόχος μας είναι να βελτιώσουμε τις μεμβράνες αυτές. Συνεπώς, η επιλογή των κατάλληλων υλικών και η βελτιστοποίηση των ιδιοτήτων διαπερατότητας τους, αποτελούν βασικά ζητήματα. Οι νανοσωλήνες άνθρακα αποτελούν μία πολύ ελκυστική επιλογή λόγω της ικανότητας απόρριψης οργανικών ρύπων χαμηλού μοριακού βάρους. Πρόκειται για ένα πολλά υποσχόμενο νάνο-υλικό το οποίο δύναται να κατασκευασθεί εύκολα και μάλιστα με αρκετά χαμηλό κόστος. Πλήθος ερευνητών έχουν παρατηρήσει ότι η διαχυτότητα του νερού διαμέσω των νανοσωλήνων, ειναι κάποιες τάξεις μεγέθους μεγαλύτερη από την αντίστοιχη διαχυτότητα στις πλαστικές μεμβράνες. Γι’ αυτό το λόγο, η διεξαγωγή μοριακών προσομοιώσεων είναι πολύ σημαντική, όσον αναφορά στη μελέτη της μεταφοράς των μορίων αυτών, έτσι ώστε να επιτευχθεί καλύτερος σχεδιασμός των υλικών.
Στην παρούσα εργασία, το ενδιαφέρον μας στρέφεται γύρω από την κινητικότητα που αναπτύσουν τα μόρια του νερού μέσα σε νανοσύνθετες μεμβράνες πολυμερούς (PMMA) με νανοσωλήνες άνθρακα (CNTs). Τόσο από προσομοιώσεις μοριακής δυναμικής, όσο και από πειραματικά δεδομένα, γνωρίζουμε την τιμή του συντελεστή διάχυσης του νερόυ στους νανοσωλήνες, καθώς και στην πολυμερική μήτρα PMMA. Η αναλυτική μέθοδος της μοριακής δυναμικής αδυναμεί να εξετάσει παραμετρικά τέτοια μεγάλα συστήματα, μεγάλων χαρακτηριστικών χρόνων χαλάρωσης, λόγω πολύ υψηλού υπολογιστκού κόστους. Η τεχνική που χρησιμοποιήσαμε είναι μία στοχαστική μέθοδος προσομοίωσης Kinetic Monte Carlo. Πρόκειται για μία μέθοδο που από τη μία προσομοιώνει δυναμικά φαινόμενα, σαν αυτό της διάχυσης που μελετάμε, ενώ από την άλλη, λόγω έλλειψης δυναμικών αλληλεπίδρασης, είναι εκπληκτικά γρηγορότερη της μοριακής δυναμικής, ακόμα και σε μεγάλα συστήματα.
Όλες οι προσομοιώσεις πραγματοποιήθηκαν σε κυβικά πλέγματα, οι ακμές των οποίων θεωρούνται είτε “γρήγορες” περιοχές νανοσωλήνων, είτε “αργές” περιοχές PMMA. Τα μόρια του νερού μπορούν να κινούνται μόνο στο διακριτό χώρο που ορίζουν οι ακμές αυτές, έτσι ώστε να εισέρχονται και να εξέρχονται από τους νανοσωλήνες. Υπολογίζεται έτσι η χρονική εξέλιξη της μέσης τετραγωνικής μετατόπισης των μορίων του νερού (περιπατητές) στη μεμβράνη, από την οποία εξάγεται η τιμή του συντελεστή της αποτελεσματικής διαχυτότητας Deff του νερού στο νανοσύνθετο.
Μελετήθηκαν συστήματα με παράλληλους νανοσωλήνες, καθώς και με νανοσωλήνες τυχαίας διεύθυνσης. Η τιμή της Deff δε φάνηκε να εξαρτάται από την διευθέτηση των CNTs. Παρατηρήθηκε ότι η αύξηση της κατ’όγκο συγκέντρωσης (c %) της μεμβράνης σε νανοσωλήνες, αυξάνει την αποτελεσματική διαχυτότητα του νερού. Επιπλέον, σημαντική ήταν η αύξηση της Deff υπό την αύξηση του αδιάστατου χαρακτηριστικού λόγου “μήκους νανοσωλήνα / διάμετρο νανοσωλήνα” (L/D), υπό σταθερή συγκέντρωση. Προσομοιώθηκαν συνολικά 70 συστήματα. Η μέγιστη κατ’όγκο συγκέντρωση σε νανοσωλήνες είναι 30%, ενώ ο μέγιστος λόγος L/D εφθασε το 42. Η μέγιστη τιμή της Deff λαμβάνεται στα μέγιστα της συγκέντρωσης σε νανοσωλήνες και του χαρακτηριστικού λόγου L/D, και είναι περίπου 7 φορές μεγαλύτερη της διαχυτότητας του νερού στη μεμβράνη, απουσία νανοσωλήνων. Προτείνεται επίσης ένα μοντέλο, το οποίο προβλέπει με πολύ μεγάλη ακρίβεια τα αποτελέσματα των προσομοιώσεων, τόσο σε συστήματα παράλληλων, όσο και σε συστήματα τυχαιάς διεύθυνσης νανοσωλήνων.

Identiferoai:union.ndltd.org:upatras.gr/oai:nemertes:10889/8572
Date25 May 2015
CreatorsΜερμίγκης, Παναγιώτης
ContributorsΜαυραντζάς, Βλάσης, Mermigkis, Panagiotis, Τσαμόπουλος, Ιωάννης, Βογιατζής, Γεώργιος
Source SetsUniversity of Patras
LanguageEnglish
Detected LanguageGreek
TypeThesis
Rights0

Page generated in 0.0025 seconds