Return to search

Μελέτη των παραμέτρων της σύνθεσης υβριδικών κολλοειδών νανοκρυστάλλων με υπερπαραμαγνητικές ιδιότητες για την ανάπτυξη πολυλειτουργικών συστημάτων ελεγχόμενης χορήγησης αντικαρκινικών ουσιών

Η Πακλιταξέλη (PTX) αποτελεί ένα ευρέως διαδεδομένο αντινεοπλασματικό φάρμακο και ενδείκνυται σε μεταστατικό καρκίνο του μαστού, καρκίνο ωοθηκών, μη μικροκυτταρικό καρκίνο του πνεύμονα και σε σάρκωμα Kaposi ασθενών με AIDS. Παρ’ όλα αυτά, η σημαντική τοξικότητα που εμφανίζει (μυελοκαταστολή, νευροτοξικότητα, αντιδράσεις υπερευαισθησίας), υπογραμμίζει την αναγκαιότητα για μορφοποίησή της σε Συστήματα Ελεγχόμενης Χορήγησης Φαρμάκων (DDS), με σκοπό τη μείωση των ανεπιθύμητων ενεργειών και την αύξηση της βιοδιαθεσιμότητας του φαρμάκου.
Τα πολυμερικά μικκύλια έχουν μελετεθεί εκτενώς τα τελευταία χρόνια ως Συστήματα Ελεγχόμενης Χορήγησης Φαρμάκων. Η ενσωμάτωση υπερπαραμαγνητικών νανοκρυσταλλιτών οξειδίου του σιδήρου (SPIONs) στον πυρήνα των PTX-μικκυλίων, παρέχει τη δυνατότητα μαγνητικής στόχευσης του φαρμάκου στην επιθυμητή περιοχή δράσης, καθώς και τη θεραπεία του καρκίνου μέσω επαγωγής μαγνητικής υπερθερμίας, με την εφαρμογή εναλλασσόμενου μαγνητικού πεδίου. Επιπλεόν, η χρήση των SPIONs ως σκιαγραφικά μέσα (Τ2-contrast enhancement) στη μαγνητική τομογραφία πυρηνικού συντονισμού (MRI), εξασφαλίζει το πλεονέκτημα ταυτόχρονης διάγνωσης και θεραπείας (Theranostics), αποκαλύπτοντας την πολυλειτουργικότητα των συστημάτων αυτών. Οι συγκεκριμένοι νανοφορείς, έχοντας μικρό μέγεθος (100-200nm), θεωρούνται κατάλληλοι για να αποφύγουν την οψωνινοποίηση απο τις λιποπρωτεϊνες του αίματος, την επίθεση απο τα φαγοκύτταρα του Δικτυοενδοθηλιακού συστήματος (RES) καθώς και την ταχεία νεφρική κάθαρση, με αποτέλεσμα την παρατεταμένη κυκλοφορία τους στο αίμα (stealth systems) και την εκλεκτική πρόσληψη τους απο τους συμπαγείς καρκινικούς όγκους, μέσω του φαινομένου της ενισχυμένης διαπερατότητας και κατακράτησης (EPR effect). Οι ιδιότητες αυτές, καθιστούν τα συγκεκριμένα συστήματα πολύτιμα εργαλεία στον τομέα της νανοϊατρικής.
Η παρούσα μεταπτυχιακή διατριβή πραγματεύεται τη σύνθεση υδρόφοβων SPIONs μέσω της τεχνικής της θερμικής αποικοδόμησης. Μελετήθηκαν οι συνθετικές παράμετροι (πρόδρομη ένωση, ποσότητα ελαϊκού οξέος, θερμοκρασία και διάρκεια αντίδρασης, ρυθμός αύξησης της θερμοκρασίας κ.α) που επηρεάζουν το μέγεθος, το σχήμα και τη διασπορά του μεγέθους των σχηματιζομένων νανοκρυσταλλιτών (5-13nm, σ: 10-20%), καθώς διαδραματίζουν σημαντικό ρόλο στη μαγνητική συμπεριφορά των υβριδικών νανονοφορέων. Στη συνέχεια, πραγματοποιήθηκε σύνθεση υβριδικών νανοφορέων με εγκλωβισμό των SPIONs σε πολυμερικά μικκύλια. Η παρασκευή των υπερπαραμαγνητικών μικκυλίων επιτελέστηκε με την τεχνικη solvent diffusion and evaporation (nanoprecipitation), με χρήση του αμφίφιλου συμπολυμερούς πολυ(γαλακτικό οξύ)-πολυ(αιθυλενογλυκόλη) (PLA-PEG). Στον υδρόφοβο πυρήνα των μικκυλίων (PLA) δεσμεύονται υδρόφοβες ενώσεις (PTX, SPIONs), ενώ το υδρόφιλο κέλυφος (PEG) προσδίδει κολλοειδή σταθερότητα σε υδατικά μέσα (δομή πυρήνα-κελύφους). Διερευνήθηκαν διάφορες συνθετικές παράμετροι (μοριακό βάρος συμπολυμερούς, ποσότητα SPIONs, ρυθμός προσθήκης οργανικής φάσης κ.α) και προσδιορίστηκαν οι βέλτιστες συνθήκες για την παρασκευή υπερπαραμαγνητικών μικκυλίων μεγέθους <200nm, με αξιοσημείωτη κολλοειδή σταθερότητα (μέχρι και έξι μήνες), σε συνθήκες παρόμοιες με αυτές του ανθρώπινου πλάσματος (pH: 7.4, ιοντική ισχύς: 0.15Μ).
Στο επόμενο στάδιο της παρούσας εργασίας, μελετήθηκαν οι παράγοντες που επηρεάζουν τη φόρτωση-ενκαψυλίωση της PTX και των SPIONs στα πολυμερικά μικκύλια (ποσότητα PTX, ποσότητα και μέγεθος SPIONs, μοριακό βάρος PLA-PEG, ρυθμός προσθήκης οργανικής φάσης κ.α), σε φυσιολογικές συνθήκες (pH:7.4, ιοντική ισχύς: 0.15Μ). Αναπτύχθηκε πρωτόκολλο μέσω του οποίου έγινε κατορθωτός ο διαχωρισμός των μαγνητικών νανοφορέων απο τους μη μαγνητικούς, καθώς και ο υπολογισμός της φόρτωσης-ενκαψυλίωσης PTX και SPIONs ξεχωριστά, τόσο στους μαγνητικούς και μη μαγνητικούς νανοφορείς, όσο και στο μέιγμα αυτών. Οι συγκεκριμένοι νανοφορείς χαρακτηρίζονται απο εξαιρετικά υψηλή απόδοση ενκαψυλίωσης φαρμάκου (93 %wt.) και φόρτωση φαρμάκου που ανέρχεται στο 4.8 %wt. Oι αμιγώς μαγνητικοί νανοφορείς επιδεικνύουν υψηλή απόδοση ενκαψυλίωσης νανοκρυσταλλιτών (70 %wt.), ενώ η φόρτωση σε φάρμακο και SPIONs ανέρχεται σε 5.2 και 20 %wt. αντίστοιχα. Σε αμφότερες τις περιπτώσεις οι νανοφορείς, μεγέθους (υδροδυναμική διάμετρος) 170nm, χαρακτηρίζονται απο ικανοποιητική μαγνητική συμπεριφορά. Εξετάστηκε η επίδραση του μεγέθους των νανοκρυσταλλιτών στη μαγνητική συμπεριφορά των νανοφορέων. Οι αμιγώς μαγνητικοί νανοφορείς με μεγαλύτερο μέγεθος SPIONs παρουσιάζουν καλύτερη μαγνητική συμπεριφορά.
Τέλος, πραγματοποιήθηκαν μελέτες αποδέσμευσης του φαρμάκου σε PBS (0.14Μ, pH:7.4) στους 37oC και διερευνήθηκε η επίδραση της εφαρμογής εναλλασσόμενου μαγνητικού πεδίου στην αποδέσμευση της PTX απο τους μαγνητικούς νανοφορείς (Triggered Drug Release). Σε κάθε περίπτωση, παρατηρήθηκε ελεγχόμενη αποδέσμευση του φαρμάκου για 24 ώρες, σε συνθήκες που προσομοιάζουν με αυτές του πλάσματος. Ο φυσικοχημικός χαρακτηρισμός των νανοφορέων πραγματοποιήθηκε με HPLC, DLS, TGA, TEM και μαγνητοφόρηση. / Paclitaxel (PTX) is one of the most successful anticancer drugs against a broad range of solid tumors, such as metastatic breast cancer, ovarian cancer, non-small-cell lung cancer and AIDS-related Kaposi sarcoma. However, the serious systematic side effects of PTX (myelosuppression, neurotoxicity, hypersensitivity) underline the need for formulation of PTX in Drug Delivery Systems (DDS), in order to reduce the side effects and increase the bioavailability of the drug.
Among DDS, polymeric micelles have drawn much attention due to their great flexibility in tuning drug solubility, micelle size, targeted drug delivery and stability. Incorporation of Superparamagnetic Iron Oxide Nanocrystals (SPIONs) inside the core of drug-loaded polymeric micelles, imparts to the final Drug Delivery System the prospect of physical (magnetic) targeting, intrinsic therapeutic function (hyperthermia-based cancer therapy under alternating external magnetic field), T2-based contrast enhancement in magnetic resonance imaging (MRI) and remotely triggered drug release. These core-shell polymeric micelles having small size (100-200nm), are considered appropriate for avoiding both opsonization, macrophages attack by ReticuloEndothelial System (RES) and rapid renal clearance, thus allowing micelles to be taken up preferably by solid tumors through Enhanced Permeability and Retention (EPR) effect. Therefore, such nanoassemblies encode high potential in nanomedicine, due to their dual nature (Therapeutic+Diagnostic = Theranostics).
In particular, we have studied the synthesis of organophilic SPIONs through thermal decomposition. The synthetic parameters (precursor, precursor:oleic acid ratio, reaction temperature and duration, heat rate, etc.) affecting the size, shape and size distribution of the nanocrystals have also been examined thoroughly, since they play a key-role concerning the magnetic behavior of the final hybrid. Nanosized SPIONs with narrow size distribution were synthesized (5-13nm, σ: 10-20%). The preparation of poly(lactic acid)-block-poly(ethyleneglycol) (PLA-PEG) micelles encapsulating hydrophobic SPIONs, by varying the molecular weight of the polymers, the amount of SPIONs and the addition rate during micelle assembly, has also been investigated. The core-shell superparamagnetic micelles were prepared through solvent diffusion and evaporation technique (nanoprecipitation). PTX and SPIONs are being incorporated into the micelle’s hydrophobic core (PLA) through hydrophobic interactions, whereas the hydrophilic shell (PEG) stabilizes the micelles in aqueous dispersions, optimizing their colloidal stability and providing prolonged circulating time. The optimum parameters were determined, conferring to the micelles (Hydrodynamic Diameter < 200nm) high colloidal stability (up to six months) at biorelevant conditions (pH:7.4, ionic strenght: 0.15M).
The next phase of the present master thesis focused on studying the factors (amount of PTX and SPIONs, molecular weight of PLA-PEG, addition rate, etc.) affecting the Loading of PTX and SPIONs into the polymeric micelles and how they can be fine-tuned towards high drug loading, while retaining their size at a scale where long circulation would not be precluded. Through protocol establishment, we have managed to separate the magnetic and non magnetic micelles, and to determine individually the loading of PTX and SPIONs for magnetic, non magnetic micelles, as well as for the mixture of them. The micelles’ mixture exhibits very high Drug Encapsulation Efficiency (93 %wt.) and 4.8 %wt. Drug Loading (D.L). Magnetic nanocarriers display high Magnetic Encapsulation Efficiency (70 %wt.), with D.L and Magnetic Loading of 5.2 and 20 %wt. respectively, In both cases, micelles demonstrate adequate magnetic behavior and small sizes (hydrodynamic diameter: 170nm), under conditions which simulate with human plasma (pH:7.4, ionic strenght: 0.15M). The effect of SPIONs’ size on the magnetic behavior of hybrid colloids, was also examined. Magnetic nanocarriers encapsulating SPIONs of greater size exhibit better magnetic behavior.
Finally, we have conducted Drug release studies in PBS (0.14M, pH:7.4) at 37oC. The effect of SPIONs presence on the release profile of PTX, including triggered drug-release by application of AC magnetic field, has also been investigated. PTX-magnetic micelles exhibit Controlled Drug release for 24 hours. Several techniques have been used for the characterization of such nanoassemblies, like: HPLC, DLS, TGA, TEM, XRD, Magnetophoresis and Triggered Drug release by application of AC magnetic field.

Identiferoai:union.ndltd.org:upatras.gr/oai:nemertes:10889/8576
Date28 May 2015
CreatorsΣεργίδης, Ανδρέας
ContributorsΑυγουστάκης, Κωνσταντίνος, Sergides, Andreas, Αυγουστάκης, Κωνσταντίνος, Κλεπετσάνης, Παύλος, Μπακανδρίτσος, Αριστείδης
Source SetsUniversity of Patras
Languagegr
Detected LanguageGreek
TypeThesis
Rights0

Page generated in 0.0036 seconds