本文所探討的中心為貝氏模型運用於加速壽命試驗,並且假設受測項目之壽命服從Weibull分配。加速實驗環境有三種,其中第二種環境代表正常狀態,採用加速壽命試驗的方式涵蓋了三種:固定應力、漸進之逐步應力和變量曲線之逐步應力。對於先驗參數,並不是直接給予特定的值,而是透過專家評估,給定各種環境之下的產品可靠度之中位數或百分位數,再利用這些資訊經過數值運算解出先驗參數。資料的型態分成兩種,一為區間資料,另一為型一設限資料,透過蒙地卡羅法模擬出後驗分配,並且估計正常環境狀態的可靠度。 / This article develops a Bayes inference model for accelerated life testing assuming failure times at each stress level are Weibull distributed. Using the approach, there are three stressed to be used, and the three testing scenarios to be adapted are as follows:fixed-stress, progressive step-stress and profile step-stress. Prior information is used to indirectly define a multivariate prior distribution for the scale parameters at the various stress levels. The inference procedure accommodates both the interval data sampling strategy and type I censored sampling strategy for the collection of ALT test data. The inference procedure uses the well-known Markov Chain Monte Carlo methods to derive posterior approximations.
Identifer | oai:union.ndltd.org:CHENGCHI/G0923540231 |
Creators | 吳雅婷, Wu,Ya-Ting |
Publisher | 國立政治大學 |
Source Sets | National Chengchi University Libraries |
Language | 中文 |
Detected Language | English |
Type | text |
Rights | Copyright © nccu library on behalf of the copyright holders |
Page generated in 0.0018 seconds