The CUSUM control charts have been widely used in detecting small process shifts since it was first introduced by Page (1954). And recent studies have shown that adaptive charts can improve the efficiency and performance of traditional Shewhart charts. To monitor the process mean and variance in a single chart, the loss function is used as a measure statistic in this article. The loss function can measure the process quality loss while the process mean and/or variance has shifted. This study combines the three features: adaption, CUSUM and the loss function, and proposes the optimal VSSI, VSI, and FP CUSUM Loss chart. The performance of the proposed charts is measured by using Average Time to Signal (ATS) and Average Number of Observations to Signal (ANOS). The ATS and ANOS calculations are based on Markov chain approach. The performance comparisons between the proposed charts and some existing charts, such as X-bar+S^2 charts and CUSUM X-bar+S^2 charts, are illustrated by numerical analyses and some examples. From the results of the numerical analyses, it shows that the optimal VSSI CUSUM Loss chart has better performance than the optimal VSI CUSUM Loss chart, optimal FP CUSUM Loss chart, CUSUM X-bar+S^2 charts and X-bar+S^2 charts. Furthermore, using a single chart to monitor a process is not only easier but more efficient than using two charts simultaneously. Hence, the adaptive CUSUM Loss charts are recommended in real process. / The CUSUM control charts have been widely used in detecting small process shifts since it was first introduced by Page (1954). And recent studies have shown that adaptive charts can improve the efficiency and performance of traditional Shewhart charts. To monitor the process mean and variance in a single chart, the loss function is used as a measure statistic in this article. The loss function can measure the process quality loss while the process mean and/or variance has shifted. This study combines the three features: adaption, CUSUM and the loss function, and proposes the optimal VSSI, VSI, and FP CUSUM Loss chart. The performance of the proposed charts is measured by using Average Time to Signal (ATS) and Average Number of Observations to Signal (ANOS). The ATS and ANOS calculations are based on Markov chain approach. The performance comparisons between the proposed charts and some existing charts, such as X-bar+S^2 charts and CUSUM X-bar+S^2 charts, are illustrated by numerical analyses and some examples. From the results of the numerical analyses, it shows that the optimal VSSI CUSUM Loss chart has better performance than the optimal VSI CUSUM Loss chart, optimal FP CUSUM Loss chart, CUSUM X-bar+S^2 charts and X-bar+S^2 charts. Furthermore, using a single chart to monitor a process is not only easier but more efficient than using two charts simultaneously. Hence, the adaptive CUSUM Loss charts are recommended in real process.
Identifer | oai:union.ndltd.org:CHENGCHI/G0097354001 |
Creators | 林政憲 |
Publisher | 國立政治大學 |
Source Sets | National Chengchi University Libraries |
Language | 英文 |
Detected Language | English |
Type | text |
Rights | Copyright © nccu library on behalf of the copyright holders |
Page generated in 0.0022 seconds