• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

最大利潤下規格上限與EWMA管制圖之設計 / Design of upper specification and EWMA control chart with maximal profit

蔡佳宏, Tsai, Chia Hung Unknown Date (has links)
The determination of economic control charts and the determination of specification limits with minimum cost are two different research topics. In this study, we first combine the design of economic control charts and the determination of specification limits to maximize the expected profit per unit time for the smaller the better quality variable following the gamma distribution. Because of the asymmetric distribution, we design the EWMA control chart with asymmetric control limits. We simultaneously determine the economic EWMA control chart and upper specification limit with maximum expected profit per unit time. Then, extend the approach to determine the economic variable sampling interval EWMA control chart and upper specification limit with maximum expected profit per unit time. In all our numerical examples of the two profit models, the optimum expected profit per unit time under inspection is higher than that of no inspection. The detection ability of the EWMA chart with an appropriate weight is always better than the X-bar probability chart. The detection ability of the VSI EWMA chart is also superior to that of the fixed sampling interval EWMA chart. Sensitivity analyses are provided to determine the significant parameters for the optimal design parameters and the optimal expected profit per unit time.
2

適應性累積和損失管制圖之研究 / The Study of Adaptive CUSUM Loss Control Charts

林政憲 Unknown Date (has links)
The CUSUM control charts have been widely used in detecting small process shifts since it was first introduced by Page (1954). And recent studies have shown that adaptive charts can improve the efficiency and performance of traditional Shewhart charts. To monitor the process mean and variance in a single chart, the loss function is used as a measure statistic in this article. The loss function can measure the process quality loss while the process mean and/or variance has shifted. This study combines the three features: adaption, CUSUM and the loss function, and proposes the optimal VSSI, VSI, and FP CUSUM Loss chart. The performance of the proposed charts is measured by using Average Time to Signal (ATS) and Average Number of Observations to Signal (ANOS). The ATS and ANOS calculations are based on Markov chain approach. The performance comparisons between the proposed charts and some existing charts, such as X-bar+S^2 charts and CUSUM X-bar+S^2 charts, are illustrated by numerical analyses and some examples. From the results of the numerical analyses, it shows that the optimal VSSI CUSUM Loss chart has better performance than the optimal VSI CUSUM Loss chart, optimal FP CUSUM Loss chart, CUSUM X-bar+S^2 charts and X-bar+S^2 charts. Furthermore, using a single chart to monitor a process is not only easier but more efficient than using two charts simultaneously. Hence, the adaptive CUSUM Loss charts are recommended in real process. / The CUSUM control charts have been widely used in detecting small process shifts since it was first introduced by Page (1954). And recent studies have shown that adaptive charts can improve the efficiency and performance of traditional Shewhart charts. To monitor the process mean and variance in a single chart, the loss function is used as a measure statistic in this article. The loss function can measure the process quality loss while the process mean and/or variance has shifted. This study combines the three features: adaption, CUSUM and the loss function, and proposes the optimal VSSI, VSI, and FP CUSUM Loss chart. The performance of the proposed charts is measured by using Average Time to Signal (ATS) and Average Number of Observations to Signal (ANOS). The ATS and ANOS calculations are based on Markov chain approach. The performance comparisons between the proposed charts and some existing charts, such as X-bar+S^2 charts and CUSUM X-bar+S^2 charts, are illustrated by numerical analyses and some examples. From the results of the numerical analyses, it shows that the optimal VSSI CUSUM Loss chart has better performance than the optimal VSI CUSUM Loss chart, optimal FP CUSUM Loss chart, CUSUM X-bar+S^2 charts and X-bar+S^2 charts. Furthermore, using a single chart to monitor a process is not only easier but more efficient than using two charts simultaneously. Hence, the adaptive CUSUM Loss charts are recommended in real process.

Page generated in 0.0483 seconds