在這篇論文中,我們主要是研究一個組合等式如下:∑_(i=0)^n▒∑_(j=0)^i▒〖C(n,i)C(n+1,j)=?〗
在解這個等式時,我們將不使用一般的計算方式:而採用了建構一個對射函數(bijective function)的方法,進而得到上面等式的解。
接著我們推廣此等式為∑_(i=0)^n▒∑_(j=0)^i▒〖C(n,i)C(n+m,j)=?〗時,我們仍將繼續利用此函數是一對一的特性,為此組合等式求得通解如下,來完成這篇論文。∑_(i=0)^n▒∑_(j=0)^i▒〖C(n,i)C(n+m,j)=2^(2n+m-1)-〗 ∑_(i=0)^n▒∑_(j=1)^(m-1)▒C(n,i)C(n+m-1,i+j) / In this paper, we will mainly study a combinatorial identity, as the following:∑_(i=0)^n▒∑_(j=0)^i▒〖C(n,i)C(n+1,j)=?〗. When solving this identity, we will not use common calculation. Instead, we will build a method of bijective function in order to obtain the solution to the above identity.
To finish this paper, we will continue to generalize this identity as ∑_(i=0)^n▒∑_(j=0)^i▒〖C(n,i)C(n+m,j)=?〗 Then we will be able to use 1-1 property of this function as to get the following solution to the combinatorial identity:∑_(i=0)^n▒∑_(j=0)^i▒〖C(n,i)C(n+m,j)=2^(2n+m-1)-〗 ∑_(i=0)^n▒∑_(j=1)^(m-1)▒C(n,i)C(n+m-1,i+j)
Identifer | oai:union.ndltd.org:CHENGCHI/B2002002894 |
Creators | 陳建霖, Chen, Chien-Lin |
Publisher | 國立政治大學 |
Source Sets | National Chengchi University Libraries |
Language | 英文 |
Detected Language | English |
Type | text |
Rights | Copyright © nccu library on behalf of the copyright holders |
Page generated in 0.0013 seconds