本論文的目的是利用人臉在彩色影像中所提供的多色彩空間資訊,來達成在變異度較大的光源中即時偵測人臉的任務。彩色影像所擁有的原始RGB色彩資訊,經過轉化到正規RGB以及HSV (色調、飽合、明度)等色彩空間後,擁有對光源變化反應減緩的特性。以此特性為基礎,在4個選定的色彩空間中定義8種不同的類赫爾特徵(Haar-like feature),再利用推進演算法(Boosting algorithm)選出重要性最高的幾組特徵來進行對人臉的特徵。實驗結果顯示依此方法所產生的辨識器可在2點多秒內處理近百萬個次窗口(sub-window),並對光源變化有相當程度的抵抗力。 / The main goal of this thesis is to detect human face under varying lighting condition by utilizing multiple color space information in real-time. Images of RGB color space can be converted into normalized RGB and HSV color spaces and thus reduce the interference of lighting condition. Base on this mechanism, we define 8 Haar-like features inside 4 selected color spaces, and then select the important features with boosting algorithm. Experimental results show that detectors constructed with our approach are able to process nearly one million sub-windows within 2.4 seconds, being robust to the changes of lighting conditions.
Identifer | oai:union.ndltd.org:CHENGCHI/G0917530363 |
Creators | 李俊達 |
Publisher | 國立政治大學 |
Source Sets | National Chengchi University Libraries |
Language | 英文 |
Detected Language | English |
Type | text |
Rights | Copyright © nccu library on behalf of the copyright holders |
Page generated in 0.0038 seconds