A fotoquimioterapia (FQT) é uma técnica de tratamento de doenças graves, inclusive o câncer, que utiliza que utiliza compostos que, sendo introduzidos dentro de um organismo, não possuem alguma atividade contra ele e quando são excitados, através de luz na região espectral de 320 até 800 nm, produzem espécies reativas que induzem a morte celular. Dentre as formas desenvolvidas em FQT, a de maior destaque, e a que vem sendo mais utilizada em clínica, é a Terapia Fotodinâmica (TFD). Apesar das vantagens do uso da TFD, esta técnica possui limitações em sua eficiência, pois seu mecanismo está associado com à formação dos estados excitados do FS e do oxigênio molecular e, por isso, depende dos tempos de vida e rendimentos quânticos destes estados. Outro fator que limita a ampla aplicação da FQT na clínica é o alto custo dos FS utilizados atualmente. No grupo de fotobiofísica do Departamento de Física e Matemática da FCLRP-USP, tem-se trabalhado na busca de novos FS que possuam espécies reativas não excitados como, por exemplo, os radicais livres (peróxidos, ânion superóxido, radical hidroxila etc.), e que sejam mais viáveis economicamente em relação a outros FS já existentes no mercado. Os derivados de nitrofurano são fármacos já utilizados na rotina clínica que possuem as características promissoras para aplicação em FQT. Este trabalho dá continuidade à busca de novos FS. Escolhemos dentre inúmeros derivados de nitrofurano a Nitrofurantoína (NFT), que já é utilizada em clínica desde 1950, e que possui um custo baixo. Sua atividade fototóxica já foi documentada como reações fotoalérgicas em pacientes depois de ser administrada e nos estudos in vitro contra diversas linhagens das células neoplásicas. Contudo, os mecanismos e a dinâmica da fotoação da NFT não estavam ainda bem estabelecidas. Como objetivos gerais deste trabalho, definimos estudar a dinâmica da fotodecomposição da NFT e a liberação de radical NO em soluções aquosas, em função da composição do ambiente, tendo em vista analisar sua potencialidade para aplicação em fotoquimioterapia de diversas doenças, inclusive o câncer. Demonstramos que durante a sua fototransformação, a NFT libera o NO, e o rendimento do processo depende do estado de protonação da NFT. A liberação de NO se realiza por duas vias paralelas: liberação direta pela molécula de NFT e através da fotólise do seu fotoproduto. O estado tripleto da NFT apresenta tempo de vida (t) muito curto, provavelmente devido à participação ativa em formação de um dos fotoprodutos. Pelo fato de ser muito curto, é pouco provável que o estado T1 produza efetivamente, o oxigênio singleto. Assim, podemos associar a fotoatividade da NFT com a liberação de NO. Por fim, propusemos um esquema para a fotoliberação de NO pela fototransformação da NFT. / Photochemotherapy (PCT) is a technique applied in the treatment of serious diseases. For example in cancer, the PCT uses compounds that are introduced into an organism that do not have some activity against him, and that when are excited with light, in the spectral region from 320 to 800 nm, produces reactive species that induce the cell death. The photodynamic therapy (PDT) is the most widely used PCTtechnique in clinical applications. Despite the advantages of the use of PDT, this technique has efficiency limitations, because the PDT mechanism is associated with the formation of excited states in photosensitizer (PS) and in molecular oxygen and therefore, depends on the lifetimes and quantum yields of these states. Another limiting factor of the PDT in more PCT clinical applications is the high cost of the PS used today. The photo-biophysic group of the Department of Physics and Mathematics of the FFCLRP-USP has been working on searching of new PS without reactive species with exited states and cheaper than others PS on the market. For example, our group has investigated the free radicals: peroxide, superoxide anion, hydroxyl radical. This work continues the search for new PS. We chose the Nitrofurantoin (NFT), a nitrofuran derivative, which it is used in clinical applications since 1950 and have a low cost. The nitrofuran derivatives are drugs used in clinical applications with promising characteristics for applications in PCT. The photo-toxic activity of the NFT has been observed in photo-allergic reactions of patients and in vitro studies of several neoplastic cell lines. However, the NFT photo- action mechanisms and kinetics are not well established. The objective of this work was the study of the photo-decomposition dynamics of the NFT and the delivery of the NO radical in aqueous solutions depending on the composition of the environment, aiming to analyze its potential for application in PCT of several diseases, including cancer. In this work we demonstrated that during the photo-transformation, the NFT delivery NO and the yield of this process depends on the protonation state of the NFT. We observed that the NO delivery is made of two parallels ways: a direct delivery by NFT molecule and a delivery by photolysis of their photo-products. Probably due to the active participation in the photo-products formation we observed that the triplet state of NFT has very short lifetime (T) and therefore, it is not expected that the state T1 produces singlet oxygen. Thus, we can associate the NFT photo-activity with the NO delivery. Finally, this work proposes a scheme for NO photo-delivery using the NFT photo-transformation.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-01022011-113526 |
Date | 05 November 2010 |
Creators | Gustavo Gimenez Parra |
Contributors | Iouri Borissevitch, Carla Cristina Schmitt Cavalheiro, Gustavo Ballejo Olivera |
Publisher | Universidade de São Paulo, Física Aplicada à Medicina e Biologia, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds