The theorem of De Rham-Saito is a generalization of a lemma due to De Rham [3], which was announced and used in [7] by Kyoji Saito, as noproof of this theorem was available, Le Dung Trang encouraged to Saito to publish the proof that can be seen in [8], which indirectly encourages us to detail the proof in this article for the many applications it has,we highlight the Godbillon-Vey algorithm [4]; in the proof of Theorem classical Frobenius given in [2]; in [6] we see some interesting applications, in the proof of Frobenius theorem with singularities [5]. In [1] we givefull details of the proof given by Moussu and Rolin. / El teorema de De Rham-Saito es una generalización de un lema debido a De Rham [3], el cual fue enunciado y usado en [11] por Kyoji Saito, al no haber prueba de este teorema Le Dung Trang anima a Saito a publicar la prueba que puede ser vista en [12], lo cual indirectamente nos motiva a detallarla prueba en este articulo por las muchas aplicaciones que tiene, destacamos el algoritmo de Godbillon-Vey [5]; en la prueba del Teorema de Frobenius clásico dada en [2]; en [8] vemos unas aplicaciones interesantes; en la prueba del Teorema de Frobenius con singularidades [7]; en [1] se detalla la prueba realizada por Moussu y Rolin [10].
Identifer | oai:union.ndltd.org:PUCP/oai:tesis.pucp.edu.pe:123456789/95679 |
Date | 25 September 2017 |
Creators | Apaza Nuñez, Danny Joel |
Publisher | Pontificia Universidad Católica del Perú |
Source Sets | Pontificia Universidad Católica del Perú |
Language | Español |
Detected Language | English |
Type | Artículo |
Format | |
Source | Pro Mathematica; Vol. 26, Núm. 51-52 (2012); 49-74 |
Rights | Artículo en acceso abierto, Attribution 4.0 International, https://creativecommons.org/licenses/by/4.0/ |
Page generated in 0.0019 seconds