Return to search

Neuartige Photoschalter auf der Basis von Spiroacridanen

Zum ersten Mal wurden neuartige photoaktive heterocyclische Spiroacridane synthetisiert und deren photochemische Ringöffnungsreaktion, die zur Bildung bipolarer Acridiniumverbindungen führt, untersucht. Die Zwitterione reagierten ihrerseits thermisch zu den ursprünglichen Spiroacridanen zurück. Die Reproduzierbarkeit des Schalvorgangs wurde jedoch durch eine Nebenreaktion zum 9-H-9-aryl-acridan mit einer Aldehydfunktion im Seitenarm begrenzt. Diese unerwünschte Reaktion konnte durch die Substitution der Protonen der Methylengruppe am Sauerstoff durch Methylgruppen unterbunden werden. Jetzt funktioniert das reversible photochrome System. Je nach der Zusammensetzung des Lösungsmittels und der Größe des Ringes, liegen die Lebensdauer der Zwitterionen im Millisekunden- bis Sekundenbereich. Der Schaltvorgang konnte auch chemisch durch die abwechselnde Zugabe einer Säure und einer Base realisiert werden. Des Weiteren wurde die Spiroacridan-Einheit zu den molekularen Achsen ausgebaut, um ein Rotaxan mit dem Makrocyclus Cyclobis(paraquat-p-phenylen) herzustellen. Der Makrocyclus pendelt zwischen der Alkoxy-phenyl-Ausweichstation und der Spiroacridan-Station, hält sich aber wegen der sterischen Hinderung durch die im Pyranring des Spiroacridans anwesenden Methylgruppen hauptsächlich auf der ersten Station auf. Das Spiroacridan innerhalb des Rotaxans wurde photochemisch unter Bildung der bipolaren Acridiniumstation geöffnet. Gemäß MM2-Berechnungen befindet sich der Makrocyclus bevorzugt auf dem gebildeten Zwitterion wegen der Anziehung zwischen dem negativ geladenen Alkoxid-Seitenarm der 9-Aryl-acridinium-Einheit und dem tetrakationischen Ring. Die Translation des Makrocyclus kann auch durch die Zugabe von Säure oder Base kontrolliert werden. / For the first time we synthesized novel photoactive heterocyclic spiro-acridanes and studied their photochemical ring opening that leads to bipolar acridinium compounds; these, in turn, could thermally react to return to the spiro-acridane moiety. However, a side reaction via the photoexcited state resulted in 9-H-9-aryl-acridanes with an aldehyde side arm. This undesired reaction could be avoided by substituting the hydrogen atoms neighbouring the oxygen atom by methyl groups. With this enhancement a reversible photochromic system works. Depending on the solvent and the ring size, the lifetime of the zwitterions is in the range of milliseconds to seconds. The switching cycle could also be realized by the alternating addition of acid and base. The spiro-acridane unit was introduced into a molecular axle in order to construct a rotaxane using the wheel of cyclobis(paraquat-p-phenylene). The wheel shuttles between an alkoxy-phenyl-unit as evasive recognition station and the spiro-acridane station; but resides mainly on the first station because of the steric interference with the methyl groups present in the pyrane ring of the spiro-acridane. The spiro-acridane within the rotaxane was photochemically opened to give a rotaxane with a bipolar acridinium station. Calculations (MM2-level) suggest that the ring resides on the zwitterions due to the attraction between the negatively charged side-arm of the 9-aryl-acridinium unit and the positive charges of the wheel. The movement of the ring component can also be controlled by acid and base addition.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/17673
Date28 August 2014
CreatorsRaskosova, Alina
ContributorsAbraham, H.-Werner, Hecht, Stefan
PublisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I
Source SetsHumboldt University of Berlin
LanguageGerman
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
RightsNamensnennung - Keine kommerzielle Nutzung - Keine Bearbeitung, http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Page generated in 0.0025 seconds