IoT-devices are becoming more advanced and powerful than ever, and the applicationpotential is increasing rapidly. It is starting to become normal to have IoT-devices takingover mundane jobs such as controlling the climate at home, or monitoring e.g the water us-age of a household. These devices are usually constrained to be as cheap and primitive asthe task allows. Most of the time, they are only used to send collected data which only re-quires a one way secure channel. However, in order to apply updates or manage the deviceremotely, the communication has to be secured both ways. There are multiple suggestionson how a two way secure channel can be established while still operating on a constraineddevice. Each security specializes in its own area e.g privacy, scalability, or simplicity. Thispaper will describe how to implement the ACE-DTLS framework and analyze the perfor-mance with respect to energy consumption and security. While ACE-DTLS is quite simpleto implement without having to understand the complex math of a key exchange, it comeswith the cost of a high overhead in order to establish a secure two way connection. It mightnot be the best suited framework for small amount of data transfers available.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-161347 |
Date | January 2019 |
Creators | Johansson, Jacob |
Publisher | Linköpings universitet, Institutionen för datavetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds