Return to search

Three-dimensional mathematical Problems of thermoelasticity of anisotropic Bodies

CHAPTER I. Basic Equations. Fundamental Matrices. Thermo-Radiation Conditions
1. Basic differential equations of thermoelasticity theory
2. Fundamental matrices
3. Thermo-radiating conditions. Somigliana type integral representations

CHAPTER II. Formulation of Boundary Value and Interface Problems
4. Functional spaces
5. Formulation of basic and mixed BVPs
6. Formulation of crack type problems
7. Formulation of basic and mixed interface problems

CHAPTER III. Uniqueness Theorems
8. Uniqueness theorems in pseudo-oscillation problems
9. Uniqueness theorems in steady state oscillation problems

CHAPTER IV. Potentials and Boundary Integral Operators
10. Thermoelastic steady state oscillation potentials
11. Pseudo-oscillation potentials

CHAPTER V. Regular Boundary Value and Interface Problems
12. Basic BVPs of pseudo-oscillations
13. Basic exterior BVPs of steady state oscillations
14. Basic interface problems of pseudo-oscillations
15. Basic interface problems of steady state oscillations

CHAPTER VI. Mixed and Crack Type Problems
16. Basic mixed BVPs
17. Crack type problems
18. Mixed interface problems of steady state oscillations
19. Mixed interface problems of pseudo-oscillations

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-199800967
Date30 October 1998
CreatorsJentsch, Lothar, Natroshvili, David
ContributorsTU Chemnitz, Fakultät für Mathematik
PublisherUniversitätsbibliothek Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:preprint
Formatapplication/pdf, application/x-dvi, application/postscript, text/plain, application/zip

Page generated in 0.0019 seconds