Return to search

Development of a numerical model of single particle impact with adhesion for simulation of the Cold Spray process / Développement d'un modèle numérique d'impact à une seule particule avec adhérence pour la simulation du processus de pulvérisation à froid

Dans le cadre du procédé de revêtement de surface Cold Spray, un modèle numérique d’impact de particule sur substrat à haute vitesse est créé, ainsi qu’une nouvelle interaction adhésive, dans le logiciel de dynamique explicite du CEA Europlexus. Le modèle utilise des Éléments Finis et la méthode sans maillage SPH (Smoothed Particle Hydrodynamics) avec la loi matériau de Johnson-Cook, couramment utilisée pour modéliser les métaux à des vitesses de déformation élevées et prenant en compte le durcissement plastique, le durcissement en vitesse de déformation, et l’assouplissement thermique. L’interaction adhésive est basée sur les modèles de zone cohésive de Dugdale-Barenblatt et Griffith, avec une limite sur la contrainte cohésive et la rupture de l’adhésion dictée par l’énergie dissipée. L’étude de cette interaction dans le cas des corps déformables à haute vitesse de déformation montre que le type de modèle cohésif utilisé impacte directement et de façon très prononcée les résultats du calcul. L’interaction adhésive est ensuite liée à un mécanisme physique connu pour être la raison majeure de l’adhésion entre métaux lors du procédé Cold Spray : l’instabilité en cisaillement à l’interface de contact (présente dans la simulation grâce à une loi d’endommagement). Pour ce faire, un critère d’activation de l’adhésion est créé, basé sur une chute de la valeur locale de limite élastique du matériau. Ce critère permet de retrouver le phénomène de vitesse critique nécessaire pour l’adhésion de la particule lors du procédé. Un critère de rupture de l’adhésion supplémentaire est ajouté, basé sur la valeur de l’endommagement dans les éléments collés, et permet de retrouver le phénomène de vitesse maximale pour l’adhésion de la particule. Le modèle complet, construit sur des principes physiques, est ainsi capable de simuler le phénomène d’adhésion Cold Spray. Des tests de dureté et images EBSD sont aussi présentés et comparés aux résultats numériques. / In the context of the Cold Spray process, a numerical model of a single particle impact is developed. The point of interest is the adhesion of the particle to the substrate, thus an adhesive interaction model is also created. The impact model uses the Smooth Particle Hydrodynamics and/or the Finite Elements methods, with a Johnson-Cook material law, commonly used for metals at high strain rates, which takes into account strain hardening, strain rate hardening and thermal softening. The adhesive interaction is a Griffith and Dugdale-Barenblatt cohesive model with energy dissipation and a limit on the cohesive stress. Using this model it is shown that in the case of fast dynamics and deformable bodies, not only the adhesion parameters but also the type of model has an influence on the results. The adhesion model is also, contrary to previous works, linked with an actual physical mechanism known to induce adhesion in Cold Spray: a shear stress instability at the interface. This is done by adding an activation criterion to the cohesive model. This criterion is defined as a local drop in yield strength on either element in contact. Only when this criterion is locally met are the cohesive stresses applied and cohesive energy dissipated. The result is the apparition of a critical velocity, under which adhesion cannot occur due to either not enough initial kinetic energy to create an instability at the interface, or not enough adhesive surface created to keep the particle from rebounding. For the model to localize and undergo shear banding/shear instability, a damage value is added to the material law. An erosion criterion is then implemented in the cohesive model to remove the cohesive stresses from highly damaged parts of the adhesive surface. This results at high impact speeds in a maximal velocity above which the interfacial material is too damaged to sustain adhesion and prevent the particle from rebounding. A deposition behavior similar to the Cold Spray process is then observed, with a range of low velocities without any adhesion of the particle, then a critical speed initiating a velocity range of adhesion of the particle, and finally a maximum speed above which the interface is too damaged to sustain the adhesion. A set of experimental observations is also carried out to better understand the actual microstructural dynamics and changes at the interface of 1 mm copper particles impacted on copper. The results are compared to simulations and the use of the macroscopic Johnson-Cook law at a microscopic level is validated.

Identiferoai:union.ndltd.org:theses.fr/2016LYSEI088
Date20 September 2016
CreatorsProfizi, Paul
ContributorsLyon, Tohoku Daigaku. Toshokan, Combescure, Alain, Ogawa, Kazuhiro
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0029 seconds