Le développement et l’utilisation de nouveaux matériaux, tel que le carbure de silicium (SiC) et le nitrure de gallium (GaN), a permis un accroissement sensible des densités d’énergie traitées par les nouveaux composants de l’électronique de puissance, assortie d’une augmentation de leur compacité. Parallèlement à ces progrès technologiques, la généralisation de l’électricité en tant que vecteur d’énergie primaire au sein de systèmes de plus en plus répartis, incluant des moyens de traitement de l’information au plus près de la fonction réalisée, ouvre la voie à une nouvelle génération de systèmes mécatroniques hautement intégrés. Or, l’émergence de ces nouvelles fonctions soulève une question critique liée au mode de refroidissement de ces éléments. Cette question est intimement couplée aux aspects énergétiques et à leur impact environnemental, imposant une amélioration significative des rendements énergétiques mesurés à l’échelle de la fonction complète. C’est dans ce contexte que l’étude présentée traite tout d’abord de systèmes de récupération de la chaleur résiduelle dissipée au sein de systèmes électroniques de puissance en vue d’alimenter de manière autonome des capteurs, où autres systèmes fonctionnels, via l’énergie « ambiante » ainsi récupérée. Parmi les consommateurs plus particulièrement ciblés, des fonctions innovantes d’intensification par voie électromécanique des échanges de chaleurs au sein d’échangeurs thermique sont étudiées et mises en œuvre. A terme, l’idée serait ainsi d’alimenter les systèmes d’actionnement assurant l’optimisation des échanges de chaleur au sein du système de refroidissement d’une carte électronique au moyen même de la chaleur qu’elle dissipe, récupérée sous forme d’énergie électrique. A cette fin, les différents procédés de conversion de la chaleur en électricité sont examinés, modélisés et mis en œuvre dans la suite de ce travail. Deux types de conversion d’énergie complémentaires sont tour à tour considérés : La conversion par effet thermoélectrique, utilisant l’effet Seebeck qui a lieu en présence d’un gradient de température et l’effet pyroélectrique qui apparait en présence de variation temporelle de la température. Ces deux phénomènes sont analysés et décrits à l’aide de modélisations physiques et comportementales, incluant une approche expérimentale ayant nécessité la mise en place de bancs d’essai spécifiques. L’électricité récupérée par conversion pyroélectrique est par la suite mise en forme grâce à des systèmes de redressement à faible tension de seuil spécialement développés. La faisabilité de systèmes d’alimentation autonomes de capteurs déportés, où de systèmes d’émission (ponctuelle) de mesure, est alors concrètement démontrée en se basant sur les résultats obtenus. Ouvrant la voie à un concept de refroidissement actif des puces électroniques, tirant directement parti de la chaleur dissipée pour son alimentation grâce aux deux procédés préalablement étudiés, la problématique de l’intensification des transferts de chaleur au sein de boucles de refroidissement mécaniquement activées est abordée dans la dernière partie du mémoire. Cette activation est réalisée à l’aide d’un système d’actionnement multicellulaire réparti à base d’actionneurs piézoélectriques. Développée en étroite collaboration avec des équipes de thermodynamiciens, l’idée est de réaliser un pompage de fluide ainsi qu’une modification des échanges de chaleur au sein d’un système de transfert de chaleur en activant les parois de l’échangeur de chaleur par déformation. Le système d’actionnement préconisé est tout d’abord étudié et simulé par un calcul par éléments finis. Un prototype est construit et caractérisé sous conditions réelles dans un deuxième temps. [...] / The development and use of new materials, such as silicon carbide (SiC) and gallium nitride (GaN) has a significant increase in energy densities handled by the new components of power electronics, accompanied by an increase in compactness. Parallel to these technological advances, the widespread use of electricity as a primary energy carrier within systems increasingly distributed, including means for processing information closer to the function carried out, paving the way a new generation of highly integrated mechatronic systems. However, the emergence of these new features raises a critical question related to cooling mode thereof. This question is closely coupled to the energy aspects and their environmental impact, imposing a significant improvement in measured across the full energy function returns. It is in this context that the present study deals firstly recovery systems waste heat dissipated in power electronic systems for autonomous power sensors, where other functional systems via energy "room" and recovered. Particularly among targeted consumers, innovative features intensification electromechanically exchanges heat in heat exchangers are studied and implemented. Eventually, the idea would be to supply the operating systems for the optimization of heat exchange in the cooling system of an electronic card in the same way that heat dissipates, recovered in the form of electrical energy. To this end, various methods of conversion of heat into electricity are considered, modeled and implemented in the course of this work. Two complementary types of energy conversion are considered in turn : The thermoelectric conversion effect by using the Seebeck effect which takes place in the presence of a temperature gradient and the pyroelectric effect that appears in the presence of temporal variation of the temperature. These two phenomena are analyzed and described using physical and behavioral models, including an experimental approach requiring the establishment of specific test benches. The electricity recovered by pyroelectric conversion is then formatted with recovery systems, low voltage specially developed threshold. The feasibility of remote sensors autonomous supply, where emission (point) measuring systems, is then demonstrated concretely based on the results systems. Paving the way to a concept of active cooling computer chips, drawing directly from the heat dissipated for food through two methods previously studied the problem of intensification of heat transfer in cooling loops mechanically activated is discussed in the latter part of the memory. This activation is carried out using a distributed drive system multicellular based piezoelectric actuators. Developed in close collaboration with teams of thermodynamics, the idea is to provide a fluid pump and a change of heat transfer in a heat transfer system by activating the walls of the heat exchanger deformation. The operating system is called first studied and simulated by a finite element calculation. A prototype is built and characterized under actual conditions in a second time. The multicellular actuating system composed of a plurality of actuators and a supply system configurable multipath is then integrated into an exchange of heat testbed specifically developed. This experience is a fundamental first step in the development of electroactive systems, potentially autonomous, allowing the intensification of heat exchange in cooling loops for high-performance power electronics.
Identifer | oai:union.ndltd.org:theses.fr/2013INPT0057 |
Date | 03 July 2013 |
Creators | Amokrane, Mounir |
Contributors | Toulouse, INPT, Nogarède, Bertrand, Miscevic, Marc |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds