Return to search

Improving and Extending Behavioral Animation Through Machine Learning

Behavioral animation has become popular for creating virtual characters that are autonomous agents and thus self-animating. This is useful for lessening the workload of human animators, populating virtual environments with interactive agents, etc. Unfortunately, current behavioral animation techniques suffer from three key problems: (1) deliberative behavioral models (i.e., cognitive models) are slow to execute; (2) interactive virtual characters cannot adapt online due to interaction with a human user; (3) programming of behavioral models is a difficult and time-intensive process. This dissertation presents a collection of papers that seek to overcome each of these problems. Specifically, these issues are alleviated through novel machine learning schemes. Problem 1 is addressed by using fast regression techniques to quickly approximate a cognitive model. Problem 2 is addressed by a novel multi-level technique composed of custom machine learning methods to gather salient knowledge with which to guide decision making. Finally, Problem 3 is addressed through programming-by-demonstration, allowing a non technical user to quickly and intuitively specify agent behavior.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-1309
Date20 April 2005
CreatorsDinerstein, Jonathan J.
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.0029 seconds