The expected economic and social growth, joint with the increase on the demand of services and goods that this will cause, will become an environmental problem (emissions and noise) as well as a logistical problem (congestion) that needs to be solved. The transport sector has to reduce drastically the use of fossil fuels and Sweden’s goal is to achieve a fossil independent vehicle fleet by 2030. It is expected that 2/3 of the traffic volume of trucks in Sweden will be performed along electrified roads. The most efficient way to achieve this is to use electricity and now that the technology to power trucks without the need of huge batteries has been tested and approved, is time to develop the infrastructure needed and study its impact in transportation and logistics. An electric road is planned to be operative around 2020 from Rosersberg logistics hub to Arlanda airport cargo city. The objective is to transfer goods from the logistic area to the freight terminal by the use of electric trucks. It will optimize the transit of logistics flow in the area, reduce emissions and release the traffic pressures on E4 at the same time. Arlanda airport used to have a restriction on the emission rate of all the companies operating inside Arlanda, the emissions of the trucks that drive the cargo outside Arlanda was also taken into account. This means that in order to be below the maximum levels, the high ground transport emissions limited the number of planes that could fly. Affecting therefore the capacity of handling bigger volumes and passengers. So in order to prevent this situation from happening again in the future (more environmental restrictions will appear) the best solution for all the parts involved is to give priority to sustainability in transport planning. The aim of this project is to come up with conclusions and forecasts of the whole transportation network according to the logistics needs, by analysing the economic, environmental and logistic impacts of using the El-road. The result expected is to provide a clearer overall picture of the logistic flows between Rosersberg, Arlanda Airport, Gavle container and nearby locations, such as Stockholm or Uppsala. As well as analyse the possible scenarios that might develop once the El-road is operating. Due to the nature of our data we decided to use qualitative and subjective methods rather than quantitative ones. AHP (Analytic Hierarchy Process, Saaty 1970), will enable us to derive ratio scales from paired comparisons by defining the different criteria (cost, time, operations and sustainability) and assigning values to their respective sub criteria. These values will be assigned by each of the companies working inside Arlanda, since the goal is to define the best possible scenario for them in the future. The other method we will use is the decision tree analysis, this model of decisions and possible consequences that can occur will show a graph of all the variables that must be taken into account while defining the issues that will lead to one scenario or another. We consider it the best method to analyse and show how many facts can affect the final scenario outcome of this project.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-149534 |
Date | January 2014 |
Creators | Wang, Qiuchen, Mompo, Santiago |
Publisher | KTH, Trafik och logistik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TSC-MT ; 14-018 |
Page generated in 0.0024 seconds