In the first part of this thesis the spectrum of a matrix operator is determined. For this the coefficients of the matrix operator are assumed to satisfy rather general properties which combine smoothness and decay. With this the asymptotics of the eigenfunctions can be determined. This in turn leads to properties of the spectra with the aid of the M-matrix. In the second part it will be shown that if a discrete canonical system has absolutely continuous spectrum of a certain multiplicity, then there is a corresponding number of linearly independent solutions y which are bounded in a weak sense.
Identifer | oai:union.ndltd.org:uni-osnabrueck.de/oai:repositorium.ub.uni-osnabrueck.de:urn:nbn:de:gbv:700-2004041919 |
Date | 19 April 2004 |
Creators | Fischer, Andreas |
Contributors | Prof. Ph. D. H. Behncke, Prof. Ph. D. D. Hinton, Priv.-Doz. Dr. C. Remling |
Source Sets | Universität Osnabrück |
Language | German |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/zip, application/pdf |
Rights | http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0021 seconds