In the generalized Nash equilibrium problem not only the cost function of a player depends on the rival players' decisions, but also his constraints. This thesis presents different iterative methods for the numerical computation of a generalized Nash equilibrium, some of them globally, others locally superlinearly convergent. These methods are based on either reformulations of the generalized Nash equilibrium problem as an optimization problem, or on a fixed point formulation. The key tool for these reformulations is the Nikaido-Isoda function. Numerical results for various problem from the literature are given. / Das verallgemeinerte Nash-Gleichgewichtsproblem ist ein Lösungskonzept für Spiele, in denen neben der Kostenfunktion eines Spielers auch dessen Strategiemenge von den Entscheidungen der anderen Spieler abhängt. In dieser Arbeit werden global konvergente und lokal superlinear konvergente Verfahren zur numerischen Berechnung eines verallgemeinerten Nash-Gleichgewichts vorgestellt. Die Verfahren basieren entweder auf einer Umformulierung des verallgemeinerten Nash-Gleichgewichtsproblems als Optimierungsproblem oder als Fixpunktproblem. Für diese Umformulierungen wird die Nikaido-Isoda Funktion verwendet. Es werden numerische Ergebenisse für einige Probleme aus der Literatur widergegeben.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:3884 |
Date | January 2009 |
Creators | von Heusinger, Anna |
Source Sets | University of Würzburg |
Language | English |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds