Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Aluminum (Al) is the most abundant metal in the earth s crust, affecting thegrowth and development of plants. The objective of this work was to investigate and compare biochemical and physiological responses of potato clones, Macaca, SMIC148-A, Dakota Rose and Solanum microdontum, exposed to 0, 50, 100, 150 and 200 mg Al L-1 in nutrient solution (pH 4.0). After 7 days, Al content in roots was on average 3.9, 2.8, 3.6, and 3.7 fold greater than in shoot, in Macaca, S. microdontum, SMIC148-A and Dakota Rose clones, respectively. Based on the relative root growth, the S. microdontum and SMIC148-A were considered Al-tolerant while Macaca and Dakota Rose were considered Al-sensitive. Inhibition in shoot growth was observed only in Macaca clone. After 7 d of Al exposure, several biochemical parameters were affected, mainly in Al-sensitive clones, such as increased H2O2 concentration, catalase (CAT) activity and lipid peroxidation, and decreased chlorophyll and carotenoid content. In addition, zinc (Zn), manganese (Mn), iron (Fe) and copper (Cu) concentrations were higher in roots than in shoot of all potato clones tested. An increase in the concentration of most of the micronutrients analyzed was observed only in S. microdontum, while a decrease was observed in Macaca, SMIC148-A and Dakota Rose. Macaca, SMIC148-A, Dakota Rose and S. microdontum were grown in vitro, in hydroponics or in greenhouse to evaluate the effect of Al on the in vitro activity of acid phosphatases (APases). In plantlets grown in vitro, root APases were inhibited by Al in all clones, while shoot APases were inhibited by Al in S. microdontum and Dakota Rose and increased in Macaca at all Al levels. In plantlets grown in hydroponics, root APases increased in Macaca at 50 mg L-1, but decreased at all Al levels in S. microdontum. In greenhouse plantlets, root APases were reduced at 200 mg L-1 in S. microdontum and SMIC148- A, and at 100, 150 and 200 mg L-1 in Dakota Rose. Shoot APases were reduced in Macaca and SMIC148-A. Conversely, in Dakota Rose, APases increased at 50 and 100 mg L-1. Macaca (Al-sensitive) and SMIC148-A (Al-tolerant) clones were utilized in another experiment with the objective of evaluating whether the oxidative stress caused by Al is an early symptom than can trigger root growth inhibition. At 24, 72, 120 and 168 hours after Al addition, root growth inhibition and lipid peroxidation was observed only for the Al-sensitive clone. In the Al-tolerant clone, there was always at least one component of the antioxidant system protecting the plant against Al stress,
which did not occur in the Al-sensitive clone. With the objective of checking whether Al oxidative stress differs in potato clones, Macaca (Al-sensitive) and SMIC148-A (Altolerant), which present distinct degrees of Al- avoidance, were cultivated in a splitroot system for 10 days with five treatments of varying concentrations and locations of Al. At 200 mg Al L-1, a significant decrease in chlorophyll concentration and increase in protein oxidation was observed only for Macaca. At 200 mg L-1 supplied to half of the root system, shoot H2O2 concentration was lower than that with both root halves treated by 100 mg L-1. Shoot lipid peroxidation in Macaca increased with increasing Al supply. In SMIC148-A, plants treated with 100 and 200 mg Al L-1 in only one root half showed lower shoot lipid peroxidation. The 200 half of 0/200 plants presented significantly greater lipid peroxidation than the half untreated by Al, mainly
in Macaca. At 100 mg Al L-1 supplied to both root halves, Macaca showed an inefficient tolerance response, based on CAT activity, protein oxidation, lipid peroxidation, H2O2 concentration and APase activity. These results show that
SMIC148-A, even though presenting lower Al-avoidance than Macaca, showed a stronger local and systemic antioxidant response to Al supply. Therefore, potato clones differed in their expression of antioxidant responses in terms of amount and type, suggesting that oxidative stress is an important mechanism for Al toxicity, mainly in Al-sensitive clones. This toxicity depends not only on Al availability but also on the clone and the growth system. In addition, it was observed that the adverse effects of Al do not disappear when part of the root system is not in contact with Al, mainly in the Al-sensitive clone. / O alumínio (Al) é o metal mais abundante na crosta terrestre, afetando o crescimento e desenvolvimento das plantas. O objetivo deste trabalho foi investigar e comparar respostas bioquímicas e fisiológicas de clones de batata, Macaca,
SMIC148-A, Dakota Rose e Solanum microdontum, expostos a 0, 50, 100, 150 e 200 mg Al L-1 em solução nutritiva (pH 4,0). Após sete dias, o conteúdo de Al foi em média 3,9, 2,8, 3,6 e 3,7 vezes maior nas raízes que na parte aérea nos clones Macaca, S. microdontum, SMIC148-A e Dakota Rose, respectivamente. Baseado no crescimento relativo da raiz, S. microdontum e SMIC148-A foram considerados tolerantes ao Al e Macaca e Dakota Rose sensíveis ao Al. Foi observado inibição no crescimento da parte aérea somente no clone Macaca. Vários parâmetros bioquímicos foram afetados, principalmente nos clones sensíveis ao Al, como o aumento na concentração de H2O2, a atividade da catalase (CAT) e a peroxidação lipídica, e a redução no conteúdo de clorofila e carotenóides. A concentração de zinco, manganês, ferro e cobre foi maior nas raízes que na parte aérea em todos os
clones. Um aumento na concentração desses micronutrientes foi observado somente no clone S. microdontum, enquanto uma redução foi observada nos clones Macaca, SMIC148-A e Dakota Rose com o suprimento de Al. Com o objetivo de
analisar o efeito do Al na atividade in vitro de fosfatases ácidas (APases), os quatro clones de batata cresceram in vitro, em hidroponia ou em casa de vegetação. Em plântulas in vitro, APases de raízes foram inibidas por Al em S. microdontum e Dakota Rose e ativadas em Macaca em todos os níveis de Al. Em plântulas de hidroponia, APases de raízes aumentaram em Macaca em 50 mg L-1, enquanto
diminuíram em S. microdontum em todos os níveis de Al. Em plântulas de casa de vegetação, APases de raízes foram inibidas em 200 mg L-1 em S. microdontum e SMIC148-A, e em 100, 150 e 200 mg L-1 em Dakota Rose. APases de parte aérea foram inibidas em Macaca e SMIC148-A e ativadas em 50 e 100 mg L-1 Dakota Rose. Os clones Macaca (sensível ao Al) e SMIC148-A (tolerante ao Al) foram utilizados em um outro experimento com o objetivo de analisar se o estresse
oxidativo causado por Al é um sintoma primário que pode desencadear inibição do crescimento da raiz. Em 24, 72, 120 e 168 horas após a adição de Al, foi observado inibição do crescimento da raiz e peroxidação lipídica somente no clone sensível ao Al. No clone tolerante, há sempre pelo menos um componente do sistema antioxidante protegendo as plantas do estresse de Al, o mesmo não acontecendo com o clone sensível. Com o objetivo de checar se o estresse oxidativo provocado pelo Al difere entre os clones, Macaca (sensível ao Al) e SMIC148-A (tolerante ao Al), os quais apresentam distinto grau de escape ao Al, esses clones foram
cultivados em sistema de raízes divididas por 10 dias, com cinco tratamentos de variação de concentração e localização de Al. Em 200 mg Al L-1, uma redução na concentração de clorofila e aumento na oxidação de proteínas foi observada
somente na Macaca. Na presença de 200 mg L-1 em metade do sistema radicular, a concentração de H2O2 na parte aérea foi menor que com ambas as metades da raiz tratadas com 100 mg L-1. A peroxidação lipídica na parte aérea aumentou com o aumento do suprimento de Al na Macaca, enquanto foi menor em plantas tratadas com 100 e 200 mg Al L-1 em somente metade do sistema radicular em SMIC148-A.
Quando ambas as metades da raiz foram tratadas com 100 mg Al L-1, Macaca apresentou resposta de tolerância ineficiente, baseado na atividade da CAT, oxidação protéica, peroxidação lipídica, concentração de H2O2 e atividade de APases. Esses resultados mostram que o SMIC148-A, embora apresentou menor reação de escape ao Al que a Macaca, mostrou uma resposta antioxidante local e sistêmica mais eficiente frente ao suprimento de Al. Portanto, os clones Macaca e
SMIC148-A diferiram na expressão da quantidade e tipo de antioxidante, sugerindo que o estresse oxidativo pode ser um importante mecanismo para toxicidade de Al, principalmente nos clones sensíveis ao metal. Esta toxicidade depende não somente da disponibilidade de Al, mas também do clone e do sistema de crescimento. Além disso, os efeitos adversos do Al não desaparecem quando parte do sistema radicular não está em contato com o Al, principalmente no clone sensível ao alumínio.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufsm.br:1/3166 |
Date | 11 April 2008 |
Creators | Tabaldi, Luciane Almeri |
Contributors | Nicoloso, Fernando Teixeira, Schetinger, Maria Rosa Chitolina, Bisognin, Dilson Antônio, Fett Neto, Arthur Germano, Carvalho, Fernando Irajá Félix de |
Publisher | Universidade Federal de Santa Maria, Programa de Pós-Graduação em Agronomia, UFSM, BR, Agronomia |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Repositório Institucional da UFSM, instname:Universidade Federal de Santa Maria, instacron:UFSM |
Rights | info:eu-repo/semantics/openAccess |
Relation | 500100000009, 400, 300, 300, 300, 300, 300, 300, 3aa5c4d2-4e91-4fa4-a5f4-ffd2a4121ed7, 538ee155-3a19-448c-bf80-77b4b322d16e, cba4a833-b1c5-4608-8453-7a46f671faf1, a13554d7-5fa4-484e-a9ad-3ce710a9b8a2, e3d285ad-8e41-46a5-bbfa-0e4e7a538615, 889a0bba-ed33-44df-aecc-63e5ea182ad2 |
Page generated in 0.0036 seconds