Return to search

Le mouvement en action : estimation du flot optique et localisation d'actions dans les vidéos / Motion in action : optical flow estimation and action localization in videos

Avec la récente et importante croissance des contenus vidéos, la compréhension automatique de vidéos est devenue un problème majeur.Ce mémoire présente plusieurs contributions sur deux tâches de la compréhension automatique de vidéos : l'estimation du flot optique et la localisation d'actions humaines.L'estimation du flot optique consiste à calculer le déplacement de chaque pixel d'une vidéo et fait face à plusieurs défis tels que les grands déplacements non rigides, les occlusions et les discontinuités du mouvement.Nous proposons tout d'abord une méthode pour le calcul du flot optique, basée sur un modèle variationnel qui incorpore une nouvelle méthode d'appariement.L'algorithme d'appariement proposé repose sur une architecture corrélationnelle hiérarchique à plusieurs niveaux et gère les déformations non rigides ainsi que les textures répétitives.Il permet d'améliorer l'estimation du flot en présence de changements d'apparence significatifs et de grands déplacements.Nous présentons également une nouvelle approche pour l'estimation du flot optique basée sur une interpolation dense de correspondances clairsemées tout en respectant les contours.Cette méthode tire profit d'une distance géodésique basée sur les contours qui permet de respecter les discontinuités du mouvement et de gérer les occlusions.En outre, nous proposons une approche d'apprentissage pour détecter les discontinuités du mouvement.Les motifs de discontinuité du mouvement sont prédits au niveau d'un patch en utilisant des forêts aléatoires structurées.Nous montrons expérimentalement que notre approche surclasse la méthode basique construite sur le gradient du flot tant sur des données synthétiques que sur des vidéos réelles.Nous présentons à cet effet une base de données contenant des vidéos d'utilisateurs.La localisation d'actions humaines consiste à reconnaître les actions présentes dans une vidéo, comme `boire' ou `téléphoner', ainsi que leur étendue temporelle et spatiale.Nous proposons tout d'abord une nouvelle approche basée sur les réseaux de neurones convolutionnels profonds.La méthode passe par l'extraction de tubes dépendants de la classe à détecter, tirant parti des dernières avancées en matière de détection et de suivi.La description des tubes est enrichie par des descripteurs spatio-temporels locaux.La détection temporelle est effectuée à l'aide d'une fenêtre glissante à l'intérieur de chaque tube.Notre approche surclasse l'état de l'art sur des bases de données difficiles de localisation d'actions.Deuxièmement, nous présentons une méthode de localisation d'actions faiblement supervisée, c'est-à-dire qui ne nécessite pas l'annotation de boîtes englobantes.Des candidats de localisation d'actions sont calculés en extrayant des tubes autour des humains.Cela est fait en utilisant un détecteur d'humains robuste aux poses inhabituelles et aux occlusions, appris sur une base de données de poses humaines.Un rappel élevé est atteint avec seulement quelques tubes, permettant d'appliquer un apprentissage à plusieurs instances.En outre, nous présentons une nouvelle base de données pour la localisation d'actions humaines.Elle surmonte les limitations des bases existantes, telles la diversité et la durée des vidéos.Notre approche faiblement supervisée obtient des résultats proches de celles totalement supervisées alors qu'elle réduit significativement l'effort d'annotations requis. / With the recent overwhelming growth of digital video content, automatic video understanding has become an increasingly important issue.This thesis introduces several contributions on two automatic video understanding tasks: optical flow estimation and human action localization.Optical flow estimation consists in computing the displacement of every pixel in a video andfaces several challenges including large non-rigid displacements, occlusions and motion boundaries.We first introduce an optical flow approach based on a variational model that incorporates a new matching method.The proposed matching algorithm is built upon a hierarchical multi-layer correlational architecture and effectively handles non-rigid deformations and repetitive textures.It improves the flow estimation in the presence of significant appearance changes and large displacements.We also introduce a novel scheme for estimating optical flow based on a sparse-to-dense interpolation of matches while respecting edges.This method leverages an edge-aware geodesic distance tailored to respect motion boundaries and to handle occlusions.Furthermore, we propose a learning-based approach for detecting motion boundaries.Motion boundary patterns are predicted at the patch level using structured random forests.We experimentally show that our approach outperforms the flow gradient baseline on both synthetic data and real-world videos,including an introduced dataset with consumer videos.Human action localization consists in recognizing the actions that occur in a video, such as `drinking' or `phoning', as well as their temporal and spatial extent.We first propose a novel approach based on Deep Convolutional Neural Network.The method extracts class-specific tubes leveraging recent advances in detection and tracking.Tube description is enhanced by spatio-temporal local features.Temporal detection is performed using a sliding window scheme inside each tube.Our approach outperforms the state of the art on challenging action localization benchmarks.Second, we introduce a weakly-supervised action localization method, ie, which does not require bounding box annotation.Action proposals are computed by extracting tubes around the humans.This is performed using a human detector robust to unusual poses and occlusions, which is learned on a human pose benchmark.A high recall is reached with only several human tubes, allowing to effectively apply Multiple Instance Learning.Furthermore, we introduce a new dataset for human action localization.It overcomes the limitations of existing benchmarks, such as the diversity and the duration of the videos.Our weakly-supervised approach obtains results close to fully-supervised ones while significantly reducing the required amount of annotations.

Identiferoai:union.ndltd.org:theses.fr/2016GREAM013
Date23 September 2016
CreatorsWeinzaepfel, Philippe
ContributorsGrenoble Alpes, Schmid, Cordelia, Harchaoui, Zaid
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.003 seconds