Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-08-06T13:53:45Z
No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Dissertacao_Alaides_Ferreira.pdf: 363902 bytes, checksum: 97bfa5be0bee9a9b8c283a12f0c24a18 (MD5) / Made available in DSpace on 2014-08-06T13:53:45Z (GMT). No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Dissertacao_Alaides_Ferreira.pdf: 363902 bytes, checksum: 97bfa5be0bee9a9b8c283a12f0c24a18 (MD5)
Previous issue date: 2009 / This text is above solvability in systems of two forms additive over p-adics fields: with
of degree k and variables n > 4k at lesat p > 3k4
; with of degree an k odd integer at least n > 6k+1 variables; and with of degree 5 and p > 101 for n ≥ 31 variables, and for all p
with n ≥ 36 variables, with the possible exceptions of p = 5 and p = 11. / Este texto é sobre solubilidade no corpo dos p-ádicos de sistemas de duas formas aditivas:
com grau k e variáveis n > 4k apartir de p > 3k4
; com grau k ímpar apartir de n > 6k +1
variáveis; e de grau 5 com p > 101 para n ≥ 31 variáveis, e para todo p com n ≥ 36
variáveis, com exceções de p = 5 e p = 11.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tde/2890 |
Date | January 2009 |
Creators | Ferreira, Alaídes Inácio Stival |
Contributors | Rodrigues, Paulo Henrique de Azevedo |
Publisher | Universidade Federal de Goiás, Programa de Pós-graduação em PROFMAT (RG), UFG, Brasil, Instituto de Matemática e Estatística - IME (RG) |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG |
Rights | http://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess |
Relation | 6600717948137941247, 600, 600, 600, -4268777512335152015, -7090823417984401694, [1] ATKINSON, O. D; BRÜDERN, J; COOK, R. J. Simultancous additive congruences to a large prime modulus. Mathematika, 39(1):1–9, 1992. [2] ATKINSON, O. D; COOK, R. J. Pairs of additive congruences to a large prime modulus. J. Austral. Math. Soc. A, p. 438–455, 1989. [3] BIRCH, B. J; LEWIS, D. J. p-adic forms. J. Indian Math. Soc., (23):11–32, 1959. [4] BIRCH, B. J; LEWIS, D. J. Systems of three quadratic forms. Acta Arith., (310):423–442, 1965. [5] BOREVICH, Z. I; SHAFAREVICH, D. J. Number Theory. Academic Press, New York, 1966. [6] BROWKIN, J. On forms over p-adics fields. Bull. Acad. Polon. Sci. Math. Astronom. Phys, (14):489–492, 1966. [7] BRÜDERN, J; GODINHO, H. On artin’s conjecture, i: Systems of diagonal forms. Bull. London Math. Soc., (31):305–313, 1999. [8] BRÜDERN, J; GODINHO, H. On artin’s conjecture, ii: Pairs of additive forms. Proc. London Math. Soc., 3(84):513–538, 2002. [9] CHOWLA, I. On the number of solutions of some congruences in the variables. Proc. Nat. Acad. Sci. India Ser., (5):40–44, 1937. [10] DAVENPORT, H; LEWIS, D. J. Homogeneous additive equations. Proc. Roy. Soc. London Ser., (274):443–460, 1963. [11] DAVENPORT, H; LEWIS, D. J. Cubic equations of additive type. Philos. Trans. Roy. Soc. London Ser., (261):97–136, 1966. [12] DAVENPORT, H; LEWIS, D. J. Simultaneous equations of additive type. Philos. Trans. Roy. Soc. London Ser., (246):557–595, 1969. [13] DAVENPORT, H; LEWIS, D. J. Two additive equations. In: LeVeque, W. J; Straus, E. G, editors, NUMBER THEORY, volume 12 de Proceedings of Symposia in Pure Mathematics, p. 74–98. American Mathematical Society, Providence, RI, 1969. [14] DAVENPORT, H; LEWIS, D. J. Two additive equations. Proc. Sympos. Pure Math, (12):74–98, 1976. [15] GODINHO, H. Polinômios homogênios sobre os números P-ádicos. Technical report, Universidade de Lisboa, Lisboa, Portugal, 2000. [16] GODINHO, H; RODRIGUES, P. H. A. Conditions for the solvability of systems of two and three additive forms over P-adic filds. Proc. London Math. Soc., 3(91):545–572, 2005. [17] GODINHO, H; SHOKRANIAN, S; SOARES, M. Teoria dos Números. Universidade de Brasília, Brasília, 1994. [18] KNAPP, M. Systems of diagonal equations over P-adic fields. J. London Math. Soc., 2(63):257–267, 2001. [19] LAXTON, R. R; LEWIS, D. J. Forms of degrees 7 and 11 over P-adic fields. Proc. Sym. Pure Math (AMS, Providence, RI), (8):16–21, 1965. [20] LEWIS, D. J. Cubic homogeneus polynomials over p-adic fields. Ann. of Math., 2(56):473–478, 1952. [21] LIDL, R; NIEDERREITER, H. Finite fields, volume 20 de Encyclopedia of Mathe- matics and Its Applications. Cambridge University Press, Cambridge, 1983. [22] LOW, L; PITMAN, J; WOLFF, A. Simultaneous diagonal congruences. J. Number Theory, (29):31–59, 1988. [23] MEIR, I. D. Pair of additive congruences to a large prime modulus. Journal of number theory, (63):132–142, 1997. [24] SCHUUR, S. On systems of three quadratic forms. Acta arith., (36):315–322, 1980. [25] STEVENSON, E. The artin conjecture for three diagonal cubic forms. J. Number Theory, (14):374–390, 1982. [26] TERJANIAN, G. Un contre-exemple à une conjecture d’artin. C. R. Acad. Sci. Paris, (262):612, 1966. |
Page generated in 0.0027 seconds