<p dir="ltr">Electronics have contributed to the advancement of healthcare, wellness, security, and mobility, resulting in a higher standard of living. However, these ever-accelerating advancements and widespread application come at the cost of a shortened product life cycle and increase in produced E-waste which poses a significant environmental challenge. Recycling E-waste is challenging due to the complexity of electronics and packaging, hindering component retrieval for reuse. While sustainable materials for electronics have been researched, sustainable integrated circuit (IC) packaging for conventional electronics remains unexplored. This study introduces a method involving dissolvable additively manufactured packaging materials to recover commercial-off-the-shelf (COTS) chips from used electronics, which would alleviate supply-chain stress, reduce the need for manufacturing similar chips, and minimize environmental impact. In this work, Polyvinyl alcohol (PVA) and Acrylonitrile butadiene styrene (ABS), are explored as potential dissolvable semiconductor packaging materials. Optimal dissolving conditions allow chip recovery in less than 11 minutes for PVA and 2 minutes for ABS. This approach offers a sustainable packaging method for commercial electronic chips that matches conventional packaging performance with the added functionality of recoverable and recyclable components, contributing to the gap in sustainability and recycling for conventional electronics.</p>
Identifer | oai:union.ndltd.org:purdue.edu/oai:figshare.com:article/26358967 |
Date | 26 July 2024 |
Creators | Dhiya eddine Belkadi (19200505) |
Source Sets | Purdue University |
Detected Language | English |
Type | Text, Thesis |
Rights | CC BY 4.0 |
Relation | https://figshare.com/articles/thesis/ADDITIVE_MANUFACTURING_BASED_DISSOLVABLE_CHIP_PACKAGING/26358967 |
Page generated in 0.0021 seconds