Les effets caloriques représentent la capacité d’un matériau à voir son entropie varier sous l’effet d’une sollicitation externe et peuvent être utilisés pour des systèmes de refroidissement à l'état solide en remplacement (ou complément) des dispositifs traditionnels à base de fluides frigorifiques. Dans cette thèse, nous avons cherché à étudier l'effet élastocalorique du caoutchouc naturel. Après une présentation des différents matériaux caloriques et du caoutchouc naturel, le chapitre 2 détaille la caractérisation élastocalorique du caoutchouc naturel, et les résultats sont interprétés à partir de la notion de cristallisation induite par la déformation. Le changement de température adiabatique élastocalorique et la variation d’entropie associée atteignent 9K et 50kJ.m-3.K-1, ce qui est très important comparé aux autres matériaux caloriques. L’effet élastocalorique étant maximum pour une déformation voisine de 4,5, une pré-déformation peut être appliquée pour éviter la zone moindre activité élastocalorique. La mesure directe de l’effet élastocalorique est ensuite comparée à une méthode indirecte déduite du facteur de Clapeyron, et les divergences sont discutées. Dans le chapitre 3, la contrainte et la température élastocalorique sont simulées par un modèle de Flory modifié sur la base de la cristallisation. Il est possible de prédire le comportement contrainte-déformation à différentes températures, ainsi que les variations de température élastocaloriques à température ambiante. Dans le chapitre 4, les effets de la fatigue sur l’effet élastocalorique du caoutchouc naturel sont ensuite étudiés. La résistance à la fatigue pour de grandes amplitudes de déformation est très faible (< 800 cycles). Trois régimes de déformation intermédiaire sont ensuite testés : 0-3, 2-5, et 4-7, et permet d’établir que le régime 2-5 est le plus performant (jusqu’à 100 000 cycles). Dans le dernier chapitre, un modèle de système régénératif de refroidissement à base de matériaux caloriques est développé afin d’établir des lignes directrices pour le choix des matériaux élastocaloriques / In this thesis, we aimed to study the eC effect of natural rubber (NR) and to prove its potential to act as an eC material primarily. The method for improving the eC effect efficiency and fatigue life of NR were also proposed. The eC effect of NR is characterized directly, and interpretation based on the theory of strain-induced crystallization/crystallite (SIC) is proposed. The eC adiabatic temperature change and isothermal entropy change of NR can be up to 9 K and 50 kJ.m-3.K-1 (56 J.kg-1.K-1), which are larger than most of caloric materials. Two coefficients, eC strain coefficient and eC stress coefficient , are defined for evaluating the eC performance at different strains, where is the specific entropy, is the engineering strain, is the temperature and is the stretching stress. It’s found that both coefficients are maximum for a strain around 4.5, indicating that the highest eC performance occurred at middle strain, which is attributed to the occurrence of SIC. To improve the eC performance, it is proposed to apply a pre-strain, so that the low strain regime where eC performance is low can be skipped. Moreover, the large needed deformation can be reduced by the pre-strain and thus the possibility of a compact cooling system designed based on NR is improved. The fatigue property of eC effect of NR is then investigated. The fatigue life at large deformation strain amplitudes (strain of 1-6) is about 800 cycles for the tested NR, which is too short to be used for a cooling system. Decreasing strain amplitude is necessary to extend fatigue life up to requirement of a cooling device. For the same small strain amplitude of 3, the fatigue property is compared at amorphous strain regime (strain of 0-3), onset strain of melting (strain of 2-5) and high strain of SIC (strain of 4-7). It’s found that a larger eC temperature change and a better fatigue property can be obtained at two SIC strain regimes (strain of 2-5 and 4-7) than amorphous strain regime. Especially, the fatigue property at the onset strain of melting (strain of 2-5) is better than that at high strain of SIC (strain of 4-7). A high-cycle fatigue was applied at the strain of 2-5 (most promising strain regime) up to 1.7×105 cycles. It was observed that there is no crack of the sample, as well as a degradation degree of 12% of the eC temperature change. Furthermore, the eC stress coefficient (4.4 K/MPa) at onset strain of melting is larger than that at high strain of SIC (1.6 K/MPa). As a result, the middle strain regime (onset strain regime of melting) can get a higher eC performance, larger temperature change, and better fatigue life, which should be chosen for eC cooling system.
Identifer | oai:union.ndltd.org:theses.fr/2016LYSEI025 |
Date | 25 March 2016 |
Creators | Xie, Zhong Jian |
Contributors | Lyon, Guyomar, Daniel, Sebald, Gaël |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds