Return to search

Etude du pseudo-spectre d'opérateurs non auto-adjoints

On s'intéresse dans cette thèse au pseudo-spectre d'une classe particulière d'opérateurs non auto-adjoints. Plus précisément, on étudie les propriétés microlocales régissant les phénomènes de stabilité ou d'instabilité spectrale qui apparaissent sous l'effet de petites perturbations pour les opérateurs différentiels définis en quantification de Weyl par des symboles quadratiques elliptiques à valeurs complexes. Nous établissons dans ce manuscript une condition nécessaire et suffisante simple portant sur le symbole de Weyl de tels opérateurs, qui assure la stabilité de leurs spectres. Lorsque cette condition est violée, nous démontrons qu'il se développe de très fortes instabilités spectrales pour les hautes énergies de ces opérateurs dans des régions -- qui peuvent être très éloignées de leurs spectres -- dont nous donnons une description géométrique précise. Pour mettre en évidence de telles instabilités spectrales, nous sommes amenés à étudier et à établir certaines conditions géométriques assurant l'existence de quasi-modes semi-classiques pour des opérateurs pseudo-différentiels généraux.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00109895
Date12 June 2006
CreatorsPravda-Starov, Karel
PublisherUniversité Rennes 1
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0015 seconds