External stores mounted on aircraft generate loads which need to be estimated before first takeoff. These loads can be measured in a wind tunnel but since the possible store configurations are basically endless, testing them all is neither economically feasible nor time efficient. Thus, scaling based on geometrical similarity is used. This can, however, be a crude method. Stores with similar geometrical properties can still behave in different ways due to aerodynamic interference caused by adjacent surfaces. To improve the scaling performance, this work focuses on investigating two CFD codes, ADAPDT and Edge. The CFD simulations are used to derive the difference in aerodynamic coefficients, or the Δ-effect, between a reference store and the new untested store. The Δ-effect is then applied to an existing wind tunnel measurement of the reference store, yielding an estimation of the aerodynamic properties for the new store. The results show that ADAPDT, using a coarse geometry representation, has large difficulties predicting the new store properties, even for a very simple store configuration on the aircraft. Therefore it is not suited to use as a scaling tool in its present condition. Edge on the other hand uses a more precise geometry representation and proves to deliver good estimations of the new store load behavior. Results are well balanced and mainly conservative. Some further work is needed to verify the performance but Edge is the recommended tool for scaling.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-54127 |
Date | January 2009 |
Creators | Spjutare, Christian |
Publisher | Linköpings universitet, Mekanisk värmeteori och strömningslära |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0086 seconds