No / Determining bioequivalence for solution pressurized metered dose inhalers (pMDI) is difficult because the critical
characteristics of such products are poorly defined. The aim of this study was to elucidate the non-aerodynamic properties of the
emitted aerosol particles from two solution pMDI products that determine their biopharmaceutical differences after deposition.
Novel particle capture and analysis techniques were employed to characterize the physicochemical and biopharmaceutical
properties of two beclomethasone dipropionate (BDP) products: QVAR and Sanasthmax. The BDP particles emitted from the
Sanasthmax inhaler were discernibly different those emitted from QVAR in terms of size (50% larger, less porous), solid state
(less crystalline) and dissolution (20-fold slower). When deposited onto the surface of respiratory epithelial cell layers, QVAR
delivered ∼50% more BDP across the cell layer in 60 min than Sanasthmax. Biopharmaceutical performance was not attributable
to individual particle properties as these were manifold with summative and/or competing effects. The cell culture dissolution−
absorption model revealed the net effect of the particle formed on drug disposition and was predictive of human systemic
absorption of BDP delivered by the test inhalers. This illustrates the potential of the technique to detect the effect of formulation
on the performance of aerosolized particles and contribute to assessment of bioequivalence. / This work was in part funded by a grant from the Safety and Environmental Assurance Centre, Unilever Colworth, U.K. Particle sizing was performed by Steve Ingham, Institute of Pharmaceutical Science, King’s College London.
Identifer | oai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/17380 |
Date | 15 October 2019 |
Creators | Grainger, C.I., Saunders, M., Buttini, F., Telford, Richard, Merolla, L.L., Martin, G.P., Jones, S.A., Forbes, B. |
Source Sets | Bradford Scholars |
Language | English |
Detected Language | English |
Type | Article, No full-text in the repository |
Page generated in 0.0025 seconds