• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Critical characteristics for corticosteroid solution metered dose inhaler bioequivalence

Grainger, C.I., Saunders, M., Buttini, F., Telford, Richard, Merolla, L.L., Martin, G.P., Jones, S.A., Forbes, B. 15 October 2019 (has links)
No / Determining bioequivalence for solution pressurized metered dose inhalers (pMDI) is difficult because the critical characteristics of such products are poorly defined. The aim of this study was to elucidate the non-aerodynamic properties of the emitted aerosol particles from two solution pMDI products that determine their biopharmaceutical differences after deposition. Novel particle capture and analysis techniques were employed to characterize the physicochemical and biopharmaceutical properties of two beclomethasone dipropionate (BDP) products: QVAR and Sanasthmax. The BDP particles emitted from the Sanasthmax inhaler were discernibly different those emitted from QVAR in terms of size (50% larger, less porous), solid state (less crystalline) and dissolution (20-fold slower). When deposited onto the surface of respiratory epithelial cell layers, QVAR delivered ∼50% more BDP across the cell layer in 60 min than Sanasthmax. Biopharmaceutical performance was not attributable to individual particle properties as these were manifold with summative and/or competing effects. The cell culture dissolution− absorption model revealed the net effect of the particle formed on drug disposition and was predictive of human systemic absorption of BDP delivered by the test inhalers. This illustrates the potential of the technique to detect the effect of formulation on the performance of aerosolized particles and contribute to assessment of bioequivalence. / This work was in part funded by a grant from the Safety and Environmental Assurance Centre, Unilever Colworth, U.K. Particle sizing was performed by Steve Ingham, Institute of Pharmaceutical Science, King’s College London.
2

Études biopharmaceutiques et formulation de chloramphénicol et de thiamphénicol pour le traitement ciblé des infections pulmonaires par voie inhalée / Biopharmaceutical studies and formulation of chloramphenicol and thiamphenicol for the treatment of pulmonary infections by inhalation route

Nurbaeti, Siti Nani 13 December 2017 (has links)
L'émergence rapide de bactéries résistantes et l’absence de nouveaux traitements efficaces ont conduit à réutiliser d’anciens antibiotiques. Le chloramphenicol (CHL) et le thiamphenicol (THA) ont ainsi été proposés pour traiter les infections respiratoires multirésistantes. Leur administration directe dans les poumons sous forme d’aérosols thérapeutiques devrait augmenter leur efficacité et minimiser l’exposition systémique responsable d’effets secondaires, en particulier lors de traitements prolongés. Ce travail de thèse a eu pour objectifs de réaliser des étudies biopharmaceutiques et de développer des formulations d’aérosols pour la voie pulmonaire. La perméabilité membranaire du CHL et du THA a été évaluée sur le modèle d’épithélium bronchique Calu-3 et leur pharmacocinétique a été réalisée chez le rat après administrations intratrachéale et intraveineuse. La perméabilité membranaire in vitro du CHL s’est révélée élevée, et intermédiaire pour le THA. Les deux antibiotiques sont substrats de transporteurs membranaires d’efflux. Les études pharmacocinétiques, cohérents avec les études in vitro, ont montré un impact nul de la voie d’administration dans cas du CHL et modéré dans le cas du THA. Par conséquent, pour prolonger l’exposition pulmonaire à ces antibiotiques, des formulations à libération prolongées basées sur des nanoparticules ont été incluses dans des poudres sèches de microsphères pour inhalation. Ces poudres se caractérisent par une teneur optimale, des propriétés aérodynamiques satisfaisantes et un profil de libération prolongée, et sont donc prometteuses pour l’administration pulmonaire de CHL ou de THA sous la forme d’aérosols. / The rapid emergence of resistant bacteria and the lack of new efficient treatments lead to re-use old forgotten, but still effective, antimicrobials. In particular, chloramphenicol (CHL) and thiamphenicol (THA) have been proposed to treat multidrug-resistant pulmonary bacterial infections. Their direct administration into the lungs as therapeutic aerosols should increase their efficiency and minimize whole body exposure responsible for adverse effects, particularly in the case of prolonged treatments. The purpose of these PhD. works was to perform biopharmaceutical studies and to develop an effective aerosol formulation for lung delivery. The membrane permeability of CHL and THA was evaluated in vitro in the Calu-3 bronchial epithelial cell model and pharmacokinetic (PK) studies were carried out in rats after intratracheal and intravenous administration. In vitro membrane permeability of CHL was high, but intermediate for THA. Both compounds were shown to be substrates of membrane efflux transporters. In agreement with these findings, the PK studies showed that the administration route had no impact in the case of CHL and a moderate one in the case of THA. Therefore, in order to prolong lung exposure to CHL and THA, nanoparticle-based formulations with sustained release properties were formulated using the palmitate ester prodrugs of CHL and THA. To ease administration, nanoparticles were included in microsphere-based dry powder for inhalation. These powders showed an optimal content, satisfactory aerodynamic properties and sustained drug release, which make them promising formulations for lung delivery of CHL and THA as aerosols.

Page generated in 0.1115 seconds